Advances in Carbon Dots: Synthesis, Optical Properties, and Biomedical Applications in Theranostics: A Review.

Hà Thị Như Ý, Đỗ Mai Nguyễn

Nội dung chính của bài viết

Tóm tắt

Carbon dots (C-dots) have emerged as an attractive class of nanomaterials (NMTs) with unique optical, structural, and biocompatible properties. Discovered in 2004, C-dots have attracted significant attention because of their tunable fluorescence, convenience of synthesis, and low poisonous, positioning them as an ideal candidate for various applications, including bio-imaging, medication delivery, and theranostics. This review presents a detailed examination of the synthesis techniques for C-dots, their optical properties, and surface functionalization techniques. Additionally, the review explores the usage of C-dots in biomedical use like diagnostic imaging, sensing, and therapeutic interventions, including photodynamic and photothermal therapies. While the potential of C-dots in theranostics is vast, challenges related to large-scale production, characterization, and regulatory approval remain. This review highlights recent advances in the field and discusses future directions for the clinical translation of C-dots in personalized medicine.

Chi tiết bài viết

Tài liệu tham khảo

Atchudan, R., Perumal, S., Edison, T. N. J. I., Sundramoorthy, A. K., Vinodh, R., Sangaraju, S., Kishore, S. C., & Lee, Y. R. (2023). Natural Nitrogen-Doped Carbon Dots Obtained from Hydrothermal Carbonization of Chebulic Myrobalan and Their Sensing Ability toward Heavy Metal Ions. Sensors, 23(2). https://doi.org/10.3390/s23020787
Choi, Y., Thongsai, N., Chae, A., Jo, S., Kang, E. B., Paoprasert, P., Park, S. Y., & In, I. (2017). Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry, 47, 329–335.
Ding, H., Du, F., Liu, P., Chen, Z., & Shen, J. (2015). DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Applied Materials & Interfaces, 7(12), 6889–6897.
Dong, J., Wang, K., Sun, L., Sun, B., Yang, M., Chen, H., Wang, Y., Sun, J., & Dong, L. (2018). Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sensors and Actuators B: Chemical, 256, 616–623.
Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., Roy, S., Min, S., Kim, Y. H., Lee, S.-G., & Han, S. (2022). Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies, 32, e00397.
Farshbaf, M., Davaran, S., Rahimi, F., Annabi, N., Salehi, R., & Akbarzadeh, A. (2018). Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1331–1348.
Gao, T., Wang, X., Yang, L.-Y., He, H., Ba, X.-X., Zhao, J., Jiang, F.-L., & Liu, Y. (2017). Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS Applied Materials & Interfaces, 9(29), 24846–24856.
Gómez, I. J., Sulleiro, M. V., Pizúrová, N., Bednařík, A., Lepcio, P., Holec, D., Preisler, J., & Zajíčková, L. (2023). Spontaneous formation of carbon dots helps to distinguish molecular fluorophores species. Applied Surface Science, 610, 155536.
Hai, X., Wang, Y., Hao, X., Chen, X., & Wang, J. (2018). Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sensors and Actuators B: Chemical, 268, 61–69.
Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q., & Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 19(4), 484–488.
Hui, Y. Y., Chang, H.-C., Dong, H., & Zhang, X. (2019). Carbon nanomaterials for bioimaging, bioanalysis, and therapy. John Wiley & Sons.
Jaleel, J. A., Ashraf, S. M., Rathinasamy, K., & Pramod, K. (2019). Carbon dot festooned and surface passivated graphene-reinforced chitosan construct for tumor-targeted delivery of TNF-α gene. International Journal of Biological Macromolecules, 127, 628–636.
Kelarakis, A. (2014). From highly graphitic to amorphous carbon dots: A critical review. MRS Energy & Sustainability, 1, E2.
Kersting, D., Fasbender, S., Pilch, R., Kurth, J., Franken, A., Ludescher, M., Naskou, J., Hallenberger, A., von Gall, C., & Mohr, C. J. (2019). From in vitro to ex vivo: subcellular localization and uptake of graphene quantum dots into solid tumors. Nanotechnology, 30(39), 395101.
Kim, S., Hwang, S. W., Kim, M.-K., Shin, D. Y., Shin, D. H., Kim, C. O., Yang, S. B., Park, J. H., Hwang, E., & Choi, S.-H. (2012). Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano, 6(9), 8203–8208.
Li, K., Liu, W., Ni, Y., Li, D., Lin, D., Su, Z., & Wei, G. (2017). Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B, 5(25), 4811–4826.
Lin, C., & Li, Y. (2023). Detection of clenbuterol in meat samples using a molecularly imprinted electrochemical sensor with MnFe2O4-CQDs composite material. International Journal of Electrochemical Science, 18(6), 100178. https://doi.org/10.1016/J.IJOES.2023.100178
Mohammadinejad, R., Dadashzadeh, A., Moghassemi, S., Ashrafizadeh, M., Dehshahri, A., Pardakhty, A., Sassan, H., Sohrevardi, S.-M., & Mandegary, A. (2019). Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs-A review. Journal of Advanced Research, 18, 81–93.
Namdari, P., Negahdari, B., & Eatemadi, A. (2017). Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine & Pharmacotherapy, 87, 209–222.
Prathap, N., Balla, P., Shivakumar, M. S., Periyasami, G., Karuppiah, P., Ramasamy, K., & Venkatesan, S. (2023). Prosopis juliflora hydrothermal synthesis of high fluorescent carbon dots and its antibacterial and bioimaging applications. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-36033-3
Šafranko, S., Goman, D., Stanković, A., Medvidović-Kosanović, M., Moslavac, T., Jerković, I., & Jokić, S. (2021). An overview of the recent developments in carbon quantum dots—promising nanomaterials for metal ion detection and (Bio)molecule sensing. Chemosensors, 9(6). https://doi.org/10.3390/chemosensors9060138
Sciortino, A., Cannizzo, A., & Messina, F. (2018). Carbon nanodots: a review—from the current understanding of the fundamental photophysics to the full control of the optical response. C, 4(4), 67.
Wang, R., Lu, K.-Q., Tang, Z.-R., & Xu, Y.-J. (2017). Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 5(8), 3717–3734.
Wang, Y., & Hu, A. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921–6939.
Wang, Z., Zeng, H., & Sun, L. (2015). Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. Journal of Materials Chemistry C, 3(6), 1157–1165.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737.
Yang, J.-M., Hu, X.-W., Liu, Y.-X., & Zhang, W. (2019). Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous and Mesoporous Materials, 274, 149–154.
Yang, J., Guo, Z., & Yue, X. (2022). Preparation of Carbon Quantum Dots from Corn Straw and their Application in Cu2+ Detection. BioResources, 17(1).
Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., & Yang, B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 8, 355–381.
Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7), 2064–2077.