Advances in Carbon Dots: Synthesis, Optical Properties, and Biomedical Applications in Theranostics: A Review.

Hà Thị Như Ý, Đỗ Mai Nguyễn

Main Article Content

Abstract

Carbon dots (C-dots) have emerged as an attractive class of nanomaterials (NMTs) with unique optical, structural, and biocompatible properties. Discovered in 2004, C-dots have attracted significant attention because of their tunable fluorescence, convenience of synthesis, and low poisonous, positioning them as an ideal candidate for various applications, including bio-imaging, medication delivery, and theranostics. This review presents a detailed examination of the synthesis techniques for C-dots, their optical properties, and surface functionalization techniques. Additionally, the review explores the usage of C-dots in biomedical use like diagnostic imaging, sensing, and therapeutic interventions, including photodynamic and photothermal therapies. While the potential of C-dots in theranostics is vast, challenges related to large-scale production, characterization, and regulatory approval remain. This review highlights recent advances in the field and discusses future directions for the clinical translation of C-dots in personalized medicine.

Article Details

References

Atchudan, R., Perumal, S., Edison, T. N. J. I., Sundramoorthy, A. K., Vinodh, R., Sangaraju, S., Kishore, S. C., & Lee, Y. R. (2023). Natural Nitrogen-Doped Carbon Dots Obtained from Hydrothermal Carbonization of Chebulic Myrobalan and Their Sensing Ability toward Heavy Metal Ions. Sensors, 23(2). https://doi.org/10.3390/s23020787
Choi, Y., Thongsai, N., Chae, A., Jo, S., Kang, E. B., Paoprasert, P., Park, S. Y., & In, I. (2017). Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry, 47, 329–335.
Ding, H., Du, F., Liu, P., Chen, Z., & Shen, J. (2015). DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Applied Materials & Interfaces, 7(12), 6889–6897.
Dong, J., Wang, K., Sun, L., Sun, B., Yang, M., Chen, H., Wang, Y., Sun, J., & Dong, L. (2018). Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sensors and Actuators B: Chemical, 256, 616–623.
Ezati, P., Rhim, J.-W., Molaei, R., Priyadarshi, R., Roy, S., Min, S., Kim, Y. H., Lee, S.-G., & Han, S. (2022). Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity. Sustainable Materials and Technologies, 32, e00397.
Farshbaf, M., Davaran, S., Rahimi, F., Annabi, N., Salehi, R., & Akbarzadeh, A. (2018). Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1331–1348.
Gao, T., Wang, X., Yang, L.-Y., He, H., Ba, X.-X., Zhao, J., Jiang, F.-L., & Liu, Y. (2017). Red, yellow, and blue luminescence by graphene quantum dots: syntheses, mechanism, and cellular imaging. ACS Applied Materials & Interfaces, 9(29), 24846–24856.
Gómez, I. J., Sulleiro, M. V., Pizúrová, N., Bednařík, A., Lepcio, P., Holec, D., Preisler, J., & Zajíčková, L. (2023). Spontaneous formation of carbon dots helps to distinguish molecular fluorophores species. Applied Surface Science, 610, 155536.
Hai, X., Wang, Y., Hao, X., Chen, X., & Wang, J. (2018). Folic acid encapsulated graphene quantum dots for ratiometric pH sensing and specific multicolor imaging in living cells. Sensors and Actuators B: Chemical, 268, 61–69.
Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q., & Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 19(4), 484–488.
Hui, Y. Y., Chang, H.-C., Dong, H., & Zhang, X. (2019). Carbon nanomaterials for bioimaging, bioanalysis, and therapy. John Wiley & Sons.
Jaleel, J. A., Ashraf, S. M., Rathinasamy, K., & Pramod, K. (2019). Carbon dot festooned and surface passivated graphene-reinforced chitosan construct for tumor-targeted delivery of TNF-α gene. International Journal of Biological Macromolecules, 127, 628–636.
Kelarakis, A. (2014). From highly graphitic to amorphous carbon dots: A critical review. MRS Energy & Sustainability, 1, E2.
Kersting, D., Fasbender, S., Pilch, R., Kurth, J., Franken, A., Ludescher, M., Naskou, J., Hallenberger, A., von Gall, C., & Mohr, C. J. (2019). From in vitro to ex vivo: subcellular localization and uptake of graphene quantum dots into solid tumors. Nanotechnology, 30(39), 395101.
Kim, S., Hwang, S. W., Kim, M.-K., Shin, D. Y., Shin, D. H., Kim, C. O., Yang, S. B., Park, J. H., Hwang, E., & Choi, S.-H. (2012). Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape. ACS Nano, 6(9), 8203–8208.
Li, K., Liu, W., Ni, Y., Li, D., Lin, D., Su, Z., & Wei, G. (2017). Technical synthesis and biomedical applications of graphene quantum dots. Journal of Materials Chemistry B, 5(25), 4811–4826.
Lin, C., & Li, Y. (2023). Detection of clenbuterol in meat samples using a molecularly imprinted electrochemical sensor with MnFe2O4-CQDs composite material. International Journal of Electrochemical Science, 18(6), 100178. https://doi.org/10.1016/J.IJOES.2023.100178
Mohammadinejad, R., Dadashzadeh, A., Moghassemi, S., Ashrafizadeh, M., Dehshahri, A., Pardakhty, A., Sassan, H., Sohrevardi, S.-M., & Mandegary, A. (2019). Shedding light on gene therapy: Carbon dots for the minimally invasive image-guided delivery of plasmids and noncoding RNAs-A review. Journal of Advanced Research, 18, 81–93.
Namdari, P., Negahdari, B., & Eatemadi, A. (2017). Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomedicine & Pharmacotherapy, 87, 209–222.
Prathap, N., Balla, P., Shivakumar, M. S., Periyasami, G., Karuppiah, P., Ramasamy, K., & Venkatesan, S. (2023). Prosopis juliflora hydrothermal synthesis of high fluorescent carbon dots and its antibacterial and bioimaging applications. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-36033-3
Šafranko, S., Goman, D., Stanković, A., Medvidović-Kosanović, M., Moslavac, T., Jerković, I., & Jokić, S. (2021). An overview of the recent developments in carbon quantum dots—promising nanomaterials for metal ion detection and (Bio)molecule sensing. Chemosensors, 9(6). https://doi.org/10.3390/chemosensors9060138
Sciortino, A., Cannizzo, A., & Messina, F. (2018). Carbon nanodots: a review—from the current understanding of the fundamental photophysics to the full control of the optical response. C, 4(4), 67.
Wang, R., Lu, K.-Q., Tang, Z.-R., & Xu, Y.-J. (2017). Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. Journal of Materials Chemistry A, 5(8), 3717–3734.
Wang, Y., & Hu, A. (2014). Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2(34), 6921–6939.
Wang, Z., Zeng, H., & Sun, L. (2015). Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. Journal of Materials Chemistry C, 3(6), 1157–1165.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737.
Yang, J.-M., Hu, X.-W., Liu, Y.-X., & Zhang, W. (2019). Fabrication of a carbon quantum dots-immobilized zirconium-based metal-organic framework composite fluorescence sensor for highly sensitive detection of 4-nitrophenol. Microporous and Mesoporous Materials, 274, 149–154.
Yang, J., Guo, Z., & Yue, X. (2022). Preparation of Carbon Quantum Dots from Corn Straw and their Application in Cu2+ Detection. BioResources, 17(1).
Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., & Yang, B. (2015). The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 8, 355–381.
Zou, X., Zhang, L., Wang, Z., & Luo, Y. (2016). Mechanisms of the antimicrobial activities of graphene materials. Journal of the American Chemical Society, 138(7), 2064–2077.