Ổn định mũ hầu chắc chắn đối với lớp phương trình vi phân có trễ với nhiễu ngẫu nhiên
Nội dung chính của bài viết
Tóm tắt
Trong bài báo này chúng tôi nghiên cứu một lớp các phương trình vi phân phi tuyến với nhiễu ngẫu nhiên. Trước tiên, chúng tôi giới thiệu điều kiện Lipschitz cục bộ và điều kiện tăng trưởng phi tuyến mới. Sau đó, sử dụng hàm Lyapunov và định lý hội tụ nửa martingale, chúng tôi nghiên cứu tính ổn định mũ hầu chắc chắn của nghiệm.
Chi tiết bài viết
Từ khóa
Phương trình vi phân ngẫu nhiên, nhiễu ngẫu nhiên, ổn định mũ hầu chắc chắn
Tài liệu tham khảo
Kushner, H. J. (1968). On the stability of processes defined by stochastic difference-differential equations. Journal of Differential Equations, 4(3), 424-443.
LaSalle, J. P. (1968). Stability theory for ordinary differential equations. Journal of Differential equations, 4(1), 57-65.
Li, C. W., Dong, Z., & Situ, R. (2002). Almost sure stability of linear stochastic differential equations with jumps. Probability theory and related fields, 123(1), 121-155.
Mao, W., You, S., & Mao, X. (2016). On the asymptotic stability and numerical analysis of solutions to nonlinear stochastic differential equations with jumps. Journal of Computational and Applied Mathematics, 301, 1-15.
Mao, X. (1994). Exponential stability of stochastic differential equations. Marcel Dekker.
Zhu, Q. (2014). Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise. Journal of Mathematical Analysis and Applications, 416(1), 126-142.
Zhu, Q. (2017). Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching. International Journal of Control, 90(8), 1703-1712.
Zhu, Q. (2018). Stability analysis of stochastic delay differential equations with Lévy noise. Systems & Control Letters, 118, 62-68.
LaSalle, J. P. (1968). Stability theory for ordinary differential equations. Journal of Differential equations, 4(1), 57-65.
Li, C. W., Dong, Z., & Situ, R. (2002). Almost sure stability of linear stochastic differential equations with jumps. Probability theory and related fields, 123(1), 121-155.
Mao, W., You, S., & Mao, X. (2016). On the asymptotic stability and numerical analysis of solutions to nonlinear stochastic differential equations with jumps. Journal of Computational and Applied Mathematics, 301, 1-15.
Mao, X. (1994). Exponential stability of stochastic differential equations. Marcel Dekker.
Zhu, Q. (2014). Asymptotic stability in the pth moment for stochastic differential equations with Lévy noise. Journal of Mathematical Analysis and Applications, 416(1), 126-142.
Zhu, Q. (2017). Razumikhin-type theorem for stochastic functional differential equations with Lévy noise and Markov switching. International Journal of Control, 90(8), 1703-1712.
Zhu, Q. (2018). Stability analysis of stochastic delay differential equations with Lévy noise. Systems & Control Letters, 118, 62-68.