A Geometric Characterization of Extremal Sets in a Hemi-Sphere of S^∞.
Nội dung chính của bài viết
Tóm tắt
In the paper we give a geometric characterization of extremal sets contained in a hemi-sphere of S∞ that generalizes previously known results with respect to the classical Jung theorem.
Chi tiết bài viết

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Từ khóa
Geometric, Characterization, Extremal Sets, Hemi-Sphere, S^∞
Tài liệu tham khảo
Josef Daneš (1984). On the radius of a set in a Hilbert space. Commentationes Mathematicae Universitatis Carolinae, 25(2), 355-362.
Boris V Dekster (1995). The Jung theorem for spherical and hyperbolic spaces. Acta Mathematica Hungarica, 67(4), 315-331.
NM Gulevich (1990). The radius of a compact set in a Hilbert space. Journal of Soviet Mathematics, 52(1), 2847-2847.
Heinrich Jung (1899). Über die kleinste kugel die eine räumliche figur einschliesst. BG Teubner in Leipzig.
Urs Lang, & Viktor Schroeder (1997). Jung’s theorem for Alexandrov spaces of curvature
bounded above. Annals of Global Analysis and Geometry, 15, 263-275.
V Nguen-Khac, & K Nguen-Van (2006). An infinite-dimensional generalization of the Jung
theorem. Mathematical Notes, 80, 224-232.
NA Routledge (1952). A result in Hilbert space. The Quarterly Journal of Mathematics, 3(1), 12-18.
Boris V Dekster (1995). The Jung theorem for spherical and hyperbolic spaces. Acta Mathematica Hungarica, 67(4), 315-331.
NM Gulevich (1990). The radius of a compact set in a Hilbert space. Journal of Soviet Mathematics, 52(1), 2847-2847.
Heinrich Jung (1899). Über die kleinste kugel die eine räumliche figur einschliesst. BG Teubner in Leipzig.
Urs Lang, & Viktor Schroeder (1997). Jung’s theorem for Alexandrov spaces of curvature
bounded above. Annals of Global Analysis and Geometry, 15, 263-275.
V Nguen-Khac, & K Nguen-Van (2006). An infinite-dimensional generalization of the Jung
theorem. Mathematical Notes, 80, 224-232.
NA Routledge (1952). A result in Hilbert space. The Quarterly Journal of Mathematics, 3(1), 12-18.