Situation of Exposure to Di-n-Butyl Phthalate (DBP) of Workers at Some Rubber Processing Facilities in the Central Region

Trương Thuý Quỳnh, Nhan Hồng Quang, Trần Lê Vân Thanh

Main Article Content

Abstract

Di-n-butyl phthalate (DBP) is a chemical compound belonging to the Phthalates family and is commonly used in various modern industries for multiple purposes. It is employed as an additive for adhesive materials. DBP can dissolve in various organic solvents such as alcohol, ether, and benzene. Additionally, it is used as a corrosion inhibitor and is added as an auxiliary agent to increase the flexibility and durability of rubber (Williams et al., 2016). Phthalates are not chemically bonded to polymer chains by covalent bond but rather embed themselves among the polymer chain molecules, making them prone to leaching or vaporizing into the air and easily exposed to the environment (U.S, 2012). Under hot and sunny conditions, particularly in the high-temperature regions of the Central area, the rate of DBP vaporization increases, posing a higher risk to the health of laborers. In order to assess worker exposure level, individual worker exposure dose sampling of DBP concentration in the breathing zone of 200 workers working at stages where DBP arises in some processing facilities rubber in the Central Region were conducted. The highest recorded DBP concentration was 0.1604 mg/m3 in the curing area of Facility 2 (CS2) in Quang Nam. Workers in different production areas had varying levels of DBP exposure. Exposure to DBP compounds can occur through inhalation in areas where phthalates are used. The results collected through the assessment of current DBP exposure conditions at the research facilities presented and discussed in this paper serve as the basis for developing health protection solutions for workers.

Article Details

References

Afshari, A., Gunnarsen, L., Clausen, P. A., & Hansen, V. (2004). Emission of phthalates from PVC and other materials. Indoor air, 14(2), 120-128.
ATSDR (1995,2001,2002.). Polycyclic Aromatic Hydrocarbons. US Department of Health and Human Services, Public Health Service, Atlanta.
Bộ công thương. (2020). Báo cáo tình hình hoạt động ngành Công nghiệp và Thương mại tháng 11 và 11 tháng đầu năm 2020. https://moit.gov.vn/thong-ke/bao-cao-tong-hop/bao-cao-tinh-hinh-hoat-dong-nganh-cong-nghiep-va-thuong-mai-3.html
Casals-Casas, C., & Desvergne, B. (2011). Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol, 73, 135-162. doi:10.1146/annurev-physiol-012110-142200
Clark, K. E., David, R. M., Guinn, R., Kramarz, K. W., Lampi, M. A., & Staples, C. A. (2011). Modeling human exposure to phthalate esters: a comparison of indirect and biomonitoring estimation methods. Human and ecological risk assessment: an international journal, 17(4), 923-965. doi:10.1080/10807039.2011.588157
Dung, T. A., Trinh, H. T., Dung, N. T., & Duong, H. T. (2019). Application of an automated identification and quantification system with a GC/MS database (AIQS-DB) for simultaneousanalysis of phthalate esters and sterols in air particles. Vietnam Journal of Science and Technology, 57(2), 207-222.
Duty, S. M., Singh, N. P., Silva, M. J., Barr, D. B., Brock, J. W., Ryan, L., . . . Hauser, R. (2003). The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environmental health perspectives, 111(9), 1164-1169. doi:10.1289/ehp.5756
ECHA. (2017a). Guidance on the biocidal products regulation volume III human healthassessment & evaluation (parts B+C). Retrieved from https://doi.org/10.2823/143042
ECHA. (2017b). Guidance on the biocidal products regulation volume III human healthassessment & evaluation (parts B+C).
Figá-Talamanca, I. (1984). Spontaneous abortions among female industrial workers. International archives of occupational and environmental health, 54, 163-171. doi:10.1007/BF00378519
Fracasso, M. E., Franceschetti, P., Mossini, E., Tieghi, S., Perbellini, L., & Romeo, L. (1999). Exposure to mutagenic airborne particulate in a rubber manufacturing plant. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 441(1), 43-51.
Guo, Y., & Kannan, K. (2011). Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environmental science & technology, 45(8), 3788-3794.
Hatch, E. E., Nelson, J. W., Qureshi, M. M., Weinberg, J., Moore, L. L., Singer, M., & Webster, T. F. (2008). Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002. Environmental Health, 7, 1-15. doi:10.1186/1476-069X-7-27
Hiệp hội Cao su Việt Nam (VRA). (2018). Ngành cao su Việt Nam thực trạng và giải pháp phát triển bền vững. Nhà Xuất bản Nông nghiệp.
Hines, C. J., Hopf, N. B., Deddens, J. A., Silva, M. J., & Calafat, A. M. (2011). Estimated daily intake of phthalates in occupationally exposed groups. Journal of exposure science & environmental epidemiology, 21(2), 133-141. doi:10.1038/jes.2009.62
IARC. (1982). Monographs on the Evaluation of Carcinogenic Risks of chemmicals to Humans, The Rubber Industry, Lyon, 1982.
Jaakkola, J. J., & Knight, T. L. (2008). The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environmental health perspectives, 116(7), 845-853. doi:10.1289/ehp.10846
Kim, H. S., Kim, T. S., Shin, J.-H., Moon, H. J., Kang, I. H., Kim, I. Y., . . . Han, S. Y. (2004). Neonatal exposure to di (n-butyl) phthalate (DBP) alters male reproductive-tract development. Journal of Toxicology and Environmental Health, Part A, 67(23-24), 2045-2060. doi:10.1080/15287390490514859
Kremer, J. J., Williams, C. C., Parkinson, H. D., & Borghoff, S. J. (2005). Pharmacokinetics of monobutylphthalate, the active metabolite of di-n-butylphthalate, in pregnant rats. Toxicology letters, 159(2), 144-153. doi:10.1016/j.toxlet.2005.05.006
Liu, J., Wang, W., Zhu, J., Li, Y., Luo, L., Huang, Y., & Zhang, W. (2018). Di (2‐ethylhexyl) phthalate (DEHP) influences follicular development in mice between the weaning period and maturity by interfering with ovarian development factors and microRNAs. Environmental toxicology, 33(5), 535-544. doi:10.1002/tox.22540
Lobachemie. (2016). Dibutyl phthalate for synthesis (MSDS). https://www.lobachemie.com/
Mariana, M., Feiteiro, J., Verde, I., & Cairrao, E. (2016). The effects of phthalates in the cardiovascular and reproductive systems: A review. Environment international, 94, 758-776. doi:10.1016/j.envint.2016.07.004
Muscogiuri, G., & Colao, A. (2017). Phtalates: new cardiovascular health disruptors? Archives of toxicology, 91, 1513-1517. doi:10.1007/s00204-016-1780-1
OEHHA (2017). (Proposition 65 Maximum Allowable Dose Level (MADL) for Reproductive Toxicity for Di(n-butyl)phthalate (DBP), Office of Environmental Health Hazard Assessment (OEHHA) Reproductive and Cancer Hazard Assessment Section).
QCVN 3:2019/BKHCN. (2019). Quy chuẩn kỹ thuật quốc gia về an toàn đồ chơi trẻ em. Bộ khoa học công nghệ. In.
Rolfo, A., Nuzzo, A. M., De Amicis, R., Moretti, L., Bertoli, S., & Leone, A. (2020). Fetal–maternal exposure to endocrine disruptors: Correlation with diet intake and pregnancy outcomes. Nutrients, 12(6), 1744. doi:10.3390/nu12061744
TCVN 10736 -33 : 2017. (2017). Tiêu chuẩn quốc gia. Không khí trong nhà- Phần 33: xác định các Phtalat bằng sắc ký khối phổ (GC/MS).Bộ tài nguyên Môi trường. In.
Teil, M. J., Blanchard, M., & Chevreuil, M. (2006). Atmospheric fate of phthalate esters in an urban area (Paris-France). Science of the Total Environment, 354(2-3), 212-223.
U.S. (2012). Environmental Protection Agency. Phthalates Action Plan.
US.EPA. (1997). Exposure Factors Handbook. Washington, DC: National Center for Environmental Assessment, Office of Research and Development.
Vermeulen, R., De Hartog, J., Swuste, P., & Kromhout, H. (2000). Trends in exposure to inhalable particulate and dermal contamination in the rubber manufacturing industry: effectiveness of control measures implemented over a nine-year period. Annals of Occupational Hygiene, 44(5), 343-354. doi:10.1093/annhyg/44.5.343
Walseth, F., Toftgård, R., & Nilsen, O. G. (1982). Phthalate esters I: Effects on cytochrome P-450 mediated metabolism in rat liver and lung, serum enzymatic activities and serum protein levels. Archives of toxicology, 50, 1-10. doi:10.1007/BF00569231
Wang, P., Wang, S., & Fan, C. (2008). Atmospheric distribution of particulate-and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China. Chemosphere, 72(10), 1567-1572.
Williams, M. J., Wiemerslage, L., Gohel, P., Kheder, S., Kothegala, L. V., & Schiöth, H. B. (2016). Dibutyl phthalate exposure disrupts evolutionarily conserved insulin and glucagon-like signaling in drosophila males. Endocrinology, 157(6), 2309-2321.
Zhu, M., Huang, C., Ma, X., Wu, R., Zhu, W., Li, X., . . . Geng, S. (2018). Phthalates promote prostate cancer cell proliferation through activation of ERK5 and p38. Environmental toxicology and pharmacology, 63, 29-33. doi:10.1016/j.etap.2018.08.007
Zhu, Z., Ji, Y., Zhang, S., Zhao, J., & Zhao, J. (2016). Phthalate ester concentrations, sources, and risks in the ambient air of Tianjin, China. Aerosol and Air Quality Research, 16(9), 2294-2301.