RECENT ENHANCEMENTS IN DETECTING ABUSED WEIGHT DRUGS FOR CATTLE: AN EMERGENCY ISSUE!

Đỗ Mai Nguyễn

Nội dung chính của bài viết

Tóm tắt

 


A class of artificial PEA substances known as the β2 agonists group has historically been employed to loading bronchospasm. Additionally, these substances could reduce physical body weight and improve bone mass and muscle size. Ineligible β-2 agonist abuse in foodstuff-making cattle leaves residual β-2 agonists in eating cell units, negatively impacting people’s lives. The screening of β-2 agonist misuse so greatly depends on determining the β-2 agonist group at remaining levels in complicated models. Regarding finding β-2 agonists, numerous techniques would be created. Within them, various methods built by AG-AB interactions would be developed to find β-2 agonist groups in the scope of models consisting of buttermilk, cell units, animal feeding, purine samples, and biological blood and hair tissues.  This work outlined recent developments in examining β-2 agonists derived from the examining materials and their immunological determination. Perspective points for the foreseeable vision were shortly mentioned. Moreover, the novelty of this work could be considered in the discussion of abused weight medications that attract massive concern from social media and the government. Therefore, this contributes to the applicability of the review.

Chi tiết bài viết

Tài liệu tham khảo

Adam, A., Ong, H., Sondag, D., Rapaille, A., Marleau, S., Bellemare, M., ... & Beaulieu, N. (1990). Radioimmunoassay for albuterol using a monoclonal antibody: application for direct quantification in horse urine. Journal of immunoassay, 11(3), 329-345.
Billington, C. K., Penn, R. B., & Hall, I. P. (2017). β 2 Agonists. Pharmacology and Therapeutics of Asthma and COPD, 23-40.
Boyd, D., O'Keeffe, M., & Smyth, M. R. (1996). Methods for the determination of β-agonists in biological matrices. A review. Analyst, 121(1), 1R-10R.
Brambilla, G., Cenci, T., Franconi, F., Galarini, R., Macrı, A., Rondoni, F., ... & Loizzo, A. (2000). Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicology letters, 114(1-3), 47-53.
Chen, Y., Huang, Z., Hu, S., Zhang, G., Peng, J., Xia, J., & Lai, W. (2019). Integrated immunochromatographic assay for qualitative and quantitative detection of clenbuterol. Analytical biochemistry, 577, 45-51.
Danyi, S., Degand, G., Duez, C., Granier, B., Maghuin-Rogister, G., & Scippo, M. L. (2007). Solubilisation and binding characteristics of a recombinant β2-adrenergic receptor expressed in the membrane of Escherichia coli for the multianalyte detection of β-agonists and antagonists residues in food-producing animals. Analytica chimica acta, 589(2), 159-165.
Delahaut, P., Dubois, M., Pri‐Bar, I., Buchman, O., Degand, G., & Ectors, F. (1991). Development of a specific radioimmunoassay for the detection of clenbuterol residues in treated cattle. Food Additives & Contaminants, 8(1), 43-53.
Fu, X., Chu, Y., Zhao, K., Li, J., & Deng, A. (2017). Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchimica Acta, 184, 1711-1719.
Granja, R. H. M. M., Montes Niño, A. M., Rabone, F., Montes Niño, R. E., Cannavan, A., & Gonzalez Salerno, A. (2008). Validation of radioimmunoassay screening methods for β-agonists in bovine liver according to Commission Decision 2002/657/EC. Food Additives and Contaminants, 25(12), 1475-1481.
Gu, H., Liu, L., Song, S., Kuang, H., & Xu, C. (2016). Development of an immunochromatographic strip assay for ractopamine detection using an ultrasensitive monoclonal antibody. Food and Agricultural Immunology, 27(4), 471-483.
Hu, L. M., Luo, K., Xia, J., Xu, G. M., Wu, C. H., Han, J. J., ... & Lai, W. H. (2017). Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosensors and Bioelectronics, 91, 95-103.
Huang, Q., Bu, T., Zhang, W., Yan, L., Zhang, M., Yang, Q., ... & Zhang, D. (2018). An improved clenbuterol detection by immunochromatographic assay with bacteria@ Au composite as signal amplifier. Food chemistry, 262, 48-55.
Huang, Z. F., Song, J., Pan, L., Wang, Z., Zhang, X., Zou, J. J., ... & Wang, L. (2015). Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 12, 646-656.
Huang, Z., Xiong, Z., Chen, Y., Hu, S., & Lai, W. (2019). Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine. Journal of agricultural and food chemistry, 67(10), 3028-3036.
Junhua, L., Chunsheng, L., Meng, W., Yan, Z., Xiaofei, M., Hua, C., & Jinghui, Y. (2015). Development of an ultrasensitive immunochromatographic assay (ICA) strip for the rapid detection of phenylethanolamine A in urine and pork samples. Journal of Food Science, 80(4), T894-T899.
Li, G., Zhang, X., Zheng, F., Liu, J., & Wu, D. (2020). Emerging nanosensing technologies for the detection of β-agonists. Food Chemistry, 332, 127431.
Li, M., Yang, H., Li, S., Zhao, K., Li, J., Jiang, D., ... & Deng, A. (2014). Ultrasensitive and quantitative detection of a new β-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). Journal of agricultural and food chemistry, 62(45), 10896-10902.
Li, X., Wang, W., Wang, L., Wang, Q., Pei, X., & Jiang, H. (2015). Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay. Analytical and bioanalytical chemistry, 407, 7615-7624.
Liu, J., Yu, Q., Zhao, G., & Dou, W. (2020). Ultramarine blue nanoparticles as a label for immunochromatographic on-site determination of ractopamine. Microchimica Acta, 187, 1-8.
Loo, J. C., Beaulieu, N., Jordan, N., Brien, R., & McGilveray, I. J. (1987). A specific radio-immunoassay (RIA) for salbutamol (albuterol) in human plasma. Research communications in chemical pathology and pharmacology, 55(2), 283-286.
Mazzanti, G., Daniele, C., Boatto, G., Manca, G., Brambilla, G., & Loizzo, A. (2003). New β-adrenergic agonists used illicitly as growth promoters in animal breeding: chemical and pharmacodynamic studies. Toxicology, 187(2-3), 91-99.
Preechakasedkit, P., Ngamrojanavanich, N., Khongchareonporn, N., & Chailapakul, O. (2019). Novel ractopamine–protein carrier conjugation and its application to the lateral flow strip test for ractopamine detection in animal feed. Journal of Zhejiang University. Science. B, 20(2), 193.
Prezelj, A., Obreza, A., & Pecar, S. (2003). Abuse of clenbuterol and its detection. Current Medicinal Chemistry, 10(4), 281-290.
Ren, M. L., Chen, X. L., Li, C. H., Bo, X. U., Liu, W. J., Xu, H. Y., & Xiong, Y. H. (2014). Lateral flow immunoassay for quantitative detection of ractopamine in swine urine. Biomedical and Environmental Sciences, 27(2), 134-137.
Rominger, K. L., Mentrup, A., & Stiasni, M. (1990). Radioimmunological determination of fenoterol. Part II: Antiserum and tracer for the determination of fenoterol. Arzneimittel-forschung, 40(8), 887-895.
Shi, C. Y., Deng, N., Liang, J. J., Zhou, K. N., Fu, Q. Q., & Tang, Y. (2015). A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection. Analytica Chimica Acta, 854, 202-208.
Sillence, M. N. (2004). Technologies for the control of fat and lean deposition in livestock. The Veterinary Journal, 167(3), 242-257.
Song, C., Zhi, A., Liu, Q., Yang, J., Jia, G., Shervin, J., ... & Zhang, G. (2013). Rapid and sensitive detection of β-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosensors and Bioelectronics, 50, 62-65.
Sporano, V., Grasso, L., Esposito, M., Oliviero, G., Brambilla, G., & Loizzo, A. (1998). Clenbuterol residues in non-liver containing meat as a cause of collective food poisoning. Veterinary and human toxicology, 40(3), 141-143.
Trọng Tùng 2022. Bò nuôi bằng chất cấm được nhập lậu về Việt Nam: Lẽ nào bó tay? Báo điện tử Kinh tế & Đô thị
Wang, J., Zhang, L., Huang, Y., Dandapat, A., Dai, L., Zhang, G., ... & Chen, T. (2017). Hollow Au-Ag nanoparticles labeled immunochromatography strip for highly sensitive detection of clenbuterol. Scientific reports, 7(1), 41419.
Wang, P., Wang, R., Zhang, W., Su, X., & Luo, H. (2016a). Novel fabrication of immunochromatographic assay based on up conversion phosphors for sensitive detection of clenbuterol. Biosensors and Bioelectronics, 77, 866-870.
Wang, W., Su, X., Ouyang, H., Wang, L., & Fu, Z. (2016b). A novel immunochromatographic assay based on a time-resolved chemiluminescence strategy for the multiplexed detection of ractopamine and clenbuterol. Analytica Chimica Acta, 917, 79-84.
Wang, P., Wang, Z., & Su, X. (2015). A sensitive and quantitative fluorescent multi-component immuno-chromatographic sensor for β-agonist residues. Biosensors and Bioelectronics, 64, 511-516.
Wang, R., Zhang, W., Wang, P., & Su, X. (2018). A paper-based competitive lateral flow immunoassay for multi β-agonist residues by using a single monoclonal antibody labelled with red fluorescent nanoparticles. Microchimica Acta, 185, 1-8.
Wang, Z., Jing, J., Ren, Y., Guo, Y., Tao, N., Zhou, Q., ... & Wang, Y. (2019). Preparation and application of selenium nanoparticles in a lateral flow immunoassay for clenbuterol detection. Materials Letters, 234, 212-215.
Wang, Z., Zhou, Q., Guo, Y., Hu, H., Zheng, Z., Li, S., ... & Ma, Y. (2021). Rapid detection of ractopamine and salbutamol in swine urine by immunochromatography based on selenium nanoparticles. International Journal of Nanomedicine, 16, 2059.
Wu, K., Guo, L., Xu, W., Xu, H., Aguilar, Z. P., Xu, G., ... & Wan, Y. (2014). Sulfonated polystyrene magnetic nanobeads coupled with immunochromatographic strip for clenbuterol determination in pork muscle. Talanta, 129, 431-437.
Xie, C. H., Chen, F. J., & Yang, T. B. (2012). A high-affinity anti-salbutamol monoclonal antibody: key to a robust lateral-flow immunochromatographic assay. Analytical biochemistry, 426(2), 118-125.
Xie, Y., Chang, H., Zhao, K., Li, J., Yang, H., Mei, L., ... & Deng, A. (2015). A novel immunochromatographic assay (ICA) based on surface-enhanced Raman scattering for the sensitive and quantitative determination of clenbuterol. Analytical Methods, 7(2), 513-520.
Yu, Q., Liu, J., Zhao, G., & Dou, W. (2019). A silica nanoparticle based 2-color immunochromatographic assay for simultaneous determination of clenbuterol and ractopamine. Microchimica Acta, 186, 1-9.
Zhang, H., Wang, L., Yao, X., Wang, Z., Dou, L., Su, L., ... & Wang, J. (2020). Developing a simple immunochromatography assay for clenbuterol with sensitivity by one-step staining. Journal of Agricultural and Food Chemistry, 68(52), 15509-15515.
Zhang, M. Z., Wang, M. Z., Chen, Z. L., Fang, J. H., Fang, M. M., Liu, J., & Yu, X. P. (2009). Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine. Analytical and Bioanalytical Chemistry, 395, 2591-2599.
Zhao, B., Huang, Q., Dou, L., Bu, T., Chen, K., Yang, Q., ... & Zhang, D. (2018). Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol. Sensors and Actuators B: Chemical, 275, 223-229.
Zhu, C., Zhao, G., & Dou, W. (2018). Immunochromatographic assay using brightly colored silica nanoparticles as visible label for point-of-care detection of clenbuterol. Sensors and Actuators B: Chemical, 266, 392-399.
Zvereva, E. A., Shpakova, N. A., Zherdev, A. V., Xu, C., & Dzantiev, B. B. (2018a). Highly sensitive immunochromatographic assay for qualitative and quantitative control of beta-agonist ractopamine in foods. Applied biochemistry and microbiology, 54, 436-441.
Zvereva, E. A., Zherdev, A. V., Xu, C., & Dzantiev, B. B. (2018b). Highly sensitive immunochromatographic assay for qualitative and quantitative control of beta-agonist salbutamol and its structural analogs in foods. Food Control, 86, 50-58.