Synthetic Routes to Biomass-Derived Carbon Dots: a Mini-Review.
Nội dung chính của bài viết
Tóm tắt
Biomass-derived carbon dots (BDCDs) have emerged as sustainable photoluminescent nanomaterials for sensing, bioimaging, photocatalysis, and drug delivery, offering advantages of low cost, low toxicity, and waste valorization. BDCD properties - including particle size, quantum yield, surface chemistry, and emission wavelength - are critically influenced by the synthetic route and processing conditions, rather than the type of precursor alone. This mini-review systematically compares bottom-up methods (microwave-assisted, pyrolysis, hydrothermal/solvothermal) and top-down approaches (arc discharge, laser ablation, chemical oxidation), evaluating their influence on material characteristics and functional performance. Representative examples with quantitative data illustrate how reaction parameters control structural and photophysical properties. Critical analysis reveals persistent challenges, including batch-to-batch variability, structural ambiguity (between carbon dots and carbonized polymers), energy consumption ranging from 0.5 to 50 kWh/g, and inconsistent reporting standards. The review extracts empirical design rules that link synthesis conditions to target properties, compares BDCDs with conventional fluorophores, and assesses their environmental credentials. Directions for advancing the field include the development of standardized protocols, integration with renewable energy, comprehensive toxicological evaluation, and application-driven optimization to enable the transition from laboratory proof-of-concept to scalable, reproducible BDCD technologies.
Chi tiết bài viết

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Từ khóa
biomass-derived carbon dots, synthetic routes, bottom-up methods , top-down methods, green synthesis
Tài liệu tham khảo
Aji, M. P., Susanto, Wiguna, P. A., & Sulhadi. (2017). Facile synthesis of luminescent carbon dots from mangosteen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119–126.
Ang, W. L., Boon Mee, C. A. L., Sambudi, N. S., Mohammad, A. W., Leo, C. P., Mahmoudi, E., Ba-Abbad, M., & Benamor, A. (2020). Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Scientific Reports, 10(1), 21199.
Arole, V. M., & Munde, S. V. (2014). Fabrication of nanomaterials by top-down and bottom-up approaches-an overview. J. Mater. Sci, 1, 89–93.
Atchudan, R., Edison, T. N. J. I., Perumal, S., Muthuchamy, N., & Lee, Y. R. (2020). Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 275, 117821.
Atchudan, R., Perumal, S., Edison, T. N. J. I., Sundramoorthy, A. K., Vinodh, R., Sangaraju, S., Kishore, S. C., & Lee, Y. R. (2023). Natural Nitrogen-Doped Carbon Dots Obtained from Hydrothermal Carbonization of Chebulic Myrobalan and Their Sensing Ability toward Heavy Metal Ions. Sensors, 23(2). https://doi.org/10.3390/s23020787
Basu, S., & Hazra, S. (2017). Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors. C, 3(4), 29. https://doi.org/10.3390/c3040029
Chandrasekaran, S., Castaing, R., Cruz-Izquierdo, A., & Scott, L. J. (2021). Influence of calcium silicate and hydrophobic agent coatings on thermal, water barrier, mechanical and biodegradation properties of cellulose. Nanomaterials, 11(6), 1488.
Chao-Mujica, F. J., Garcia-Hernández, L., Camacho-López, S., Camacho-López, M., Camacho-López, M. A., Reyes Contreras, D., Pérez-Rodríguez, A., Peña-Caravaca, J. P., Páez-Rodríguez, A., & Darias-Gonzalez, J. G. (2021). Carbon quantum dots by submerged arc discharge in water: Synthesis, characterization, and mechanism of formation. Journal of Applied Physics, 129(16).
Chen, M., Zhai, J., An, Y., Li, Y., Zheng, Y., Tian, H., Shi, R., He, X., Liu, C., & Lin, X. (2022). Solvent-free pyrolysis strategy for the preparation of biomass carbon dots for the selective detection of Fe3+ ions. Frontiers in Chemistry, 10, 940398.
Cheng, C., Shi, Y., Li, M., Xing, M., & Wu, Q. (2017). Carbon quantum dots from carbonized walnut shells: Structural evolution, fluorescence characteristics, and intracellular bioimaging. Materials Science and Engineering: C, 79, 473–480.
Chung, H. K., Wongso, V., Sambudi, N. S., & Isnaeni. (2020). Biowaste-derived carbon dots/hydroxyapatite nanocomposite as drug delivery vehicle for acetaminophen. Journal of Sol-Gel Science and Technology, 93(1), 214–223.
Crista, D. M. A., Esteves da Silva, J. C. G., & Pinto da Silva, L. (2020). Evaluation of different bottom-up routes for the fabrication of carbon dots. Nanomaterials, 10(7), 1316.
Cui, L., Ren, X., Sun, M., Liu, H., & Xia, L. (2021). Carbon dots: Synthesis, properties and applications. Nanomaterials, 11(12), 3419.
Diao, H., Li, T., Zhang, R., Kang, Y., Liu, W., Cui, Y., Wei, S., Wang, N., Li, L., & Wang, H. (2018). Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 200, 226–234.
Fahmi, M. Z., Haris, A., Permana, A. J., Wibowo, D. L. N., Purwanto, B., Nikmah, Y. L., & Idris, A. (2018). Bamboo leaf-based carbon dots for efficient tumor imaging and therapy. RSC Advances, 8(67), 38376–38383.
Farshbaf, M., Davaran, S., Rahimi, F., Annabi, N., Salehi, R., & Akbarzadeh, A. (2018). Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial Cells, Nanomedicine, and Biotechnology, 46(7), 1331–1348.
Flores–Oña, D., & Fullana, A. (2020). Carbon nanoparticles production using solvent assisted hydrothermal carbonization. Diamond and Related Materials, 108, 107960.
Guo, J., Li, H., Ling, L., Li, G., Cheng, R., Lu, X., Xie, A.-Q., Li, Q., Wang, C.-F., & Chen, S. (2019). Green synthesis of carbon dots toward anti-counterfeiting. ACS Sustainable Chemistry & Engineering, 8(3), 1566–1572.
Holzinger, M., Goff, A. Le, & Cosnier, S. (2014). Nanomaterials for biosensing applications: A review. Frontiers in Chemistry, 2(AUG), 1–10. https://doi.org/10.3389/fchem.2014.00063
Hu, S., Liu, J., Yang, J., Wang, Y., & Cao, S. (2011). Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research, 13(12), 7247–7252.
Jusuf, B. N., Sambudi, N. S., & Samsuri, S. (2018). Microwave-assisted synthesis of carbon dots from eggshell membrane ashes by using sodium hydroxide and their usage for degradation of methylene blue. Journal of Environmental Chemical Engineering, 6(6), 7426–7433.
Kailasa, S. K., Ha, S., Baek, S. H., Phan, L. M. T., Kim, S., Kwak, K., & Park, T. J. (2019). Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Materials Science and Engineering: C, 98, 834–842.
Kumar, P., Dua, S., Kaur, R., Kumar, M., & Bhatt, G. (2022). A review on advancements in carbon quantum dots and their application in photovoltaics. RSC Advances, 12(8), 4714–4759.
Lin, X., Xiong, M., Zhang, J., He, C., Ma, X., Zhang, H., Kuang, Y., Yang, M., & Huang, Q. (2021). Carbon dots based on natural resources: Synthesis and applications in sensors. Microchemical Journal, 160, 105604.
Liu, H., Zhang, F., Wu, Z., Cui, E., Yue, L., Hou, G., & Wang, L. (2021). Nitrogen-Doped Porous Carbon Derived from Cellulose Microfibers of Rice Straw for High-Performance Electrodes of Supercapacitors. Energy and Fuels, 35(12), 10190–10198. https://doi.org/10.1021/acs.energyfuels.1c00323
Liu, Y., Roy, S., Sarkar, S., Xu, J., Zhao, Y., & Zhang, J. (2021). A review of carbon dots and their composite materials for electrochemical energy technologies. Carbon Energy, 3(5), 795–826.
Monje, D. S., Chacon, K. M., Galindo, I. C., Castaño, C., Ballesteros-Rueda, L. M., Valencia, G. C., Gonzalez, M. C., & Mercado, D. F. (2021). Carbon dots from agroindustrial residues: a critical comparison of the effect of physicochemical properties on their performance as photocatalyst and emulsion stabilizer. Materials Today Chemistry, 20, 100445.
Ng, H. K. M., Lim, G. K., & Leo, C. P. (2021). Comparison between hydrothermal and microwave-assisted synthesis of carbon dots from biowaste and chemical for heavy metal detection: A review. Microchemical Journal, 165, 106116.
Nguyen, T. N., Le, P. A., & Phung, V. B. T. (2020). Facile green synthesis of carbon quantum dots and biomass-derived activated carbon from banana peels: synthesis and investigation. Biomass Conversion and Biorefinery, 1–10.
Paul, A., & Kurian, M. (2021). Facile synthesis of nitrogen doped carbon dots from waste biomass: Potential optical and biomedical applications. Cleaner Engineering and Technology, 3, 100103.
Pooja, D., Singh, L., Thakur, A., & Kumar, P. (2019). Green synthesis of glowing carbon dots from Carica papaya waste pulp and their application as a label-freechemo probe for chromium detection in water. Sensors and Actuators B: Chemical, 283, 363–372.
Roshni, V., & Divya, O. (2017). One-step microwave-assisted green synthesis of luminescent N-doped carbon dots from sesame seeds for selective sensing of Fe (III). Current Science (00113891), 112(2).
Šafranko, S., Goman, D., Stanković, A., Medvidović-Kosanović, M., Moslavac, T., Jerković, I., & Jokić, S. (2021). An overview of the recent developments in carbon quantum dots - promising nanomaterials for metal ion detection and (Bio)molecule sensing. Chemosensors, 9(6). https://doi.org/10.3390/chemosensors9060138
Shandilya, P., Raizada, P., Sudhaik, A., Saini, A., Saini, R., & Singh, P. (2021). Metal and Carbon Quantum Dot Photocatalysts for Water Purification (pp. 81–118). https://doi.org/10.1007/978-3-030-54723-3_3
Singh, J., Bhattu, M., Verma, M., Brar, S. K., & Jadeja, R. (2025). Solvent-engineered carbon dots from rice straw for selective fluorescent detection of Cr (VI) and Pb (II). Journal of Molecular Structure, 1338, 142253.
Su, Y., & Zhang, Y. (2015). Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon, 83, 90–99.
Sun, B., Wu, F., Zhang, Q., Chu, X., Wang, Z., Huang, X., Li, J., Yao, C., Zhou, N., & Shen, J. (2021). Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. Journal of Colloid and Interface Science, 584, 505–519.
Wang, C., Xu, Z., Cheng, H., Lin, H., Humphrey, M. G., & Zhang, C. (2015). A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon, 82, 87–95.
Wang, S., Sun, W., Yang, D., & Yang, F. (2020). Soybean-derived blue photoluminescent carbon dots. Beilstein Journal of Nanotechnology, 11(1), 606–619.
Xia, C., Zhu, S., Feng, T., Yang, M., & Yang, B. (2019). Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots. Advanced Science, 6(23), 1901316.
Yang, J., Guo, Z., & Yue, X. (2022). Preparation of Carbon Quantum Dots from Corn Straw and their Application in Cu2+ Detection. BioResources, 17(1).
Yu, W., Sun, J., Liu, F., Yu, S., Hu, J., Zhao, Y., Wang, X., & Liu, X. (2020). Treating immunologically cold tumors by precise cancer photoimmunotherapy with an extendable nanoplatform. ACS Applied Materials & Interfaces, 12(36), 40002–40012.
Zhang, H., Zhou, Q., Han, X., Li, M., Yuan, J., Wei, R., Zhang, X., Wu, M., & Zhao, W. (2021). Nitrogen-doped carbon dots derived from hawthorn for the rapid determination of chlortetracycline in pork samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 255, 119736.
Zheng, J., Lian, Z., Liu, T., Ouyang, M., Jiang, S., Yuan, X., & Zhou, L. (2025). A review for carbon dots-based fluorescent sensing tools for antibiotic and pesticide residues progress, challenge and perspective. Food Control, 111201.