In Silico Identification of Novel Dipeptidyl Peptidase 4 Inhibitors via Pharmacophore-Guided Virtual Screening.

Khanh Huyen Thi Pham, Huynh Van Thi Nguyen, Tan Khanh Nguyen

Nội dung chính của bài viết

Tóm tắt

Dipeptidyl peptidase 4 (DPP4) plays a crucial role in glucose metabolism and is a validated therapeutic target for type 2 diabetes mellitus. Despite the availability of several DPP4 inhibitors, the discovery of novel scaffolds with improved safety and pharmacokinetic profiles remains an unmet need. In this study, a structure-based pharmacophore model integrating key interaction features of saxagliptin and vildagliptin was constructed and applied to screen the Enamine database, aiming to identify new chemotypes distinct from existing inhibitors. The top hits were prioritized through molecular docking, drug-likeness assessment, and ADMET prediction. Among them, compound 3 emerged as a novel lead scaffold, showing strong binding affinity (-9.5 kcal/mol) and stable interactions with critical catalytic residues, including Ser630 and Tyr547. SwissADME analysis indicated favorable oral pharmacokinetics with high gastrointestinal absorption and no BBB penetration. Toxicity prediction suggested low acute toxicity (LD₅₀ = 1500 mg/kg, Class 4), with minimal hepatic and cardiac risks. Overall, this work introduces a computationally validated pharmacophore-driven strategy to identify new DPP4 inhibitor scaffolds, providing a promising starting point for further experimental optimization.

Chi tiết bài viết

Tài liệu tham khảo

Baetta, R., & Corsini, A. (2011). Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs, 71(11), 1441-1467. https://doi.org/https://doi.org/10.2165/11591400-000000000-00000
Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox 3.0: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 52(W1), W513-W520. https://doi.org/10.1093/nar/gkae303
Berger, J. P., SinhaRoy, R., Pocai, A., Kelly, T. M., Scapin, G., Gao, Y. D., Pryor, K. A. D., Wu, J. K., Eiermann, G. J., & Xu, S. S. (2018). A comparative study of the binding properties, dipeptidyl peptidase‐4 (DPP‐4) inhibitory activity and glucose‐lowering efficacy of the DPP‐4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinology, diabetes & metabolism, 1(1), e00002. https://doi.org/https://doi.org/10.1002/edm2.2
Bourne, R. R. (2023). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. https://doi.org/https://doi.org/10.1016/S0140-6736(20)30925-9
Campbell, J. E., & Drucker, D. J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell metabolism, 17(6), 819-837.
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717. https://doi.org/10.1038/srep42717
Darmoul, D., Lacasa, M., Chantret, I., Swallow, D., & Trugnan, G. (1990). Isolation of a cDNA probe for the human intestinal dipeptidylpeptidase IV and assignment of the gene locus DPP4 to chromosome 2. Annals of Human Genetics, 54(3), 191-197. https://doi.org/https://doi.org/10.1111/j.1469-1809.1990.tb00377.x
Deacon, C. F. (2019). Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Frontiers in endocrinology, 10, 80. https://doi.org/https://doi.org/10.3389/fendo.2019.00080
Edwards, K. L., Stapleton, M., Weis, J., & Irons, B. K. (2012). An update in incretin-based therapy: a focus on glucagon-like peptide-1 receptor agonists. Diabetes technology & therapeutics, 14(10), 951-967. https://doi.org/https://doi.org/10.1089/dia.2012.0098.edw
Gass, J., & Khosla, C. (2007). Prolyl endopeptidases. Cellular and molecular life sciences, 64(3), 345-355. https://doi.org/https://doi.org/10.1007/s00018-006-6317-y
Green, B. D., Flatt, P. R., & Bailey, C. J. (2006). Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diabetes and vascular disease research, 3(3), 159-165. https://doi.org/tps://doi.org/10.3132/dvdr.2006.024
He, H., Tran, P., Yin, H., Smith, H., Batard, Y., Wang, L., Einolf, H., Gu, H., Mangold, J. B., & Fischer, V. (2009). Absorption, metabolism, and excretion of [14C] vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug metabolism and disposition, 37(3), 536-544. https://doi.org/https://doi.org/10.1124/dmd.108.023010
Holst, J. J., & Deacon, C. F. (1998). Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes, 47(11), 1663-1670. https://doi.org/https://doi.org/10.2337/diabetes.47.11.1663
Magliano, D. J., Boyko, E. J., & Atlas, I. D. (2021). Global picture. In IDF DIABETES ATLAS [Internet]. 10th edition. International Diabetes Federation.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256
Nabeno, M., Akahoshi, F., Kishida, H., Miyaguchi, I., Tanaka, Y., Ishii, S., & Kadowaki, T. (2013). A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochemical and biophysical research communications, 434(2), 191-196. https://doi.org/https://doi.org/10.1016/j.bbrc.2013.03.010
Nguyen, T. K., Nguyen, T.-T., Pham, K. H. T., Luong, M.-T., Trong Tai, H., Tuyet Mai, D. T., & Nguyen, N.-H. (2025). Integrating diffusion models and molecular modeling for PARP1 inhibitors generation. Journal of Biomolecular Structure and Dynamics, 1-15. https://doi.org/https://doi.org/10.1080/07391102.2025.2544217
Polgar, L., & Szeltner, Z. (2008). Structure, function and biological relevance of prolyl oligopeptidase. Current Protein and Peptide Science, 9(1), 96-107. https://doi.org/https://doi.org/10.2174/138920308783565723
Rea, D., & Fülöp, V. (2006). Structure-function properties of prolyl oligopeptidase family enzymes. Cell biochemistry and biophysics, 44(3), 349-365. https://doi.org/https://doi.org/10.1385/CBB:44:3:349
Stonehouse, A. H., Darsow, T., & Maggs, D. G. (2012). Incretin‐based therapies. Journal of diabetes, 4(1), 55-67. https://doi.org/https://doi.org/10.1111/j.1753-0407.2011.00143.x
Sunseri, J., & Koes, D. R. (2016). Pharmit: interactive exploration of chemical space. Nucleic acids research, 44(W1), W442-W448. https://doi.org/https://doi.org/10.1093/nar/gkw287
Sutanto, F., Konstantinidou, M., & Dömling, A. (2020). Covalent inhibitors: a rational approach to drug discovery. RSC medicinal chemistry, 11(8), 876-884. https://doi.org/https://doi.org/10.1039/D0MD00154F
Wang, Y.-H., Zhang, F., Diao, H., & Wu, R. (2019). Covalent inhibition mechanism of antidiabetic drugs—vildagliptin vs saxagliptin. ACS Catalysis, 9(3), 2292-2302. https://doi.org/https://doi.org/10.1021/acscatal.8b05051
Whalley, N., Pritchard, L., Smith, D., & White, A. (2011). Processing of proglucagon to GLP-1 in pancreatic a-cells: is this a paracrine mechanism enabling GLP-1 to act on b-cells. J Endocrinol, 211(1), 99-106. https://doi.org/https://doi.org/10.1530/JOE-11-0094
Yin, R., Xu, Y., Wang, X., Yang, L., & Zhao, D. (2022). Role of dipeptidyl peptidase 4 inhibitors in antidiabetic treatment. Molecules, 27(10), 3055. https://doi.org/https://doi.org/10.3390/molecules27103055
Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature reviews endocrinology, 14(2), 88-98.