Discover the Latest Advancements in Electrochemical Detection of Ascorbic Acid: Overcoming Challenges with Precision and Insight
Nội dung chính của bài viết
Tóm tắt
In this research paper, the authors conducted a study on graphene oxide by directly ap plying it to the glassy carbon electrode (GCE) using cyclic voltammetric techniques. This process resulted in a modified electrode called reduced graphene oxide modified electrode (ErGO/GCE). The electrochemical behavior of ErGO/GCE towards ascorbic acid (AAB) was investigated using differential pulse anodic stripping voltammetry (DP-ASV). The differential pulse voltammetry analysis results demonstrated that AAB could be detected with high selectivity and sensitivity on ErGO/GCE, exhibiting a peak at 0.312 V. The detection limits for AAB were found to be 0.36 µM, suggesting that ErGO/GCE is well-suited for detecting this analyte due to its excellent sensitivity and selectivity. Furthermore, the researchers successfully applied the proposed method to analyze AAB in pharmaceutical preparations.
Chi tiết bài viết
Từ khóa
DP-ASV, ErGO/GCE modified electrode, Ascorbic acid, The updated detection of a common medication, voltammetric method
Tài liệu tham khảo
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8(3), 902–907.
Chen, L., Tang, Y., Wang, K., Liu, C., & Luo, S. (2011). Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications, 13(2), 133–137.
Dalmasso, P. R., Pedano, M. L., & Rivas, G. A. (2012). Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine. In Sensors and Actuators, B: Chemical (Vol. 173, pp. 732–736). https://doi.org/10.1016/j.snb.2012.07.087
de Faria, L. V., Lisboa, T. P., de Farias, D. M., Araujo, F. M., Machado, M. M., de Sousa, R. A., Matos, M. A. C., Muñoz, R. A. A., & Matos, R. C. (2020). Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chemistry, 319, 126509.
EFSA Panel on Dietetic Products, N. and A. (NDA). (2013). Scientific opinion on dietary reference values for vitamin C. EFSA Journal, 11(11), 3418.
Elgailani, I. E. H., Elkareem, M., Noh, E., Adam, O., & Alghamdi, A. (2017). Comparison of two methods for the determination of vitamin C (ascorbic acid) in some fruits. American Journal of Chemistry, 2(1), 1–7.
Fernandes, D. M., Silva, N., Pereira, C., Moura, C., Magalhães, J. M. C. S., Bachiller-Baeza, B., Rodríguez-Ramos, I., Guerrero-Ruiz, A., Delerue-Matos, C., & Freire, C. (2015). MnFe 2 O 4@ CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sensors and Actuators B: Chemical, 218, 128–136.
Gao, X., Jang, J., & Nagase, S. (2009). Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. The Journal of Physical Chemistry C, 114(2), 832–842.
Gupta, V. K., Jain, A. K., & Shoora, S. K. (2013). Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochimica Acta, 93, 248–253. https://doi.org/10.1016/j.electacta.2013.01.065
Habibi, B., Jahanbakhshi, M., & Pournaghi-Azar, M. H. (2011). Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. Analytical Biochemistry, 411(2), 167–175. https://doi.org/10.1016/j.ab.2011.01.005
Khoshhesab, Z. M. (2015). Simultaneous electrochemical determination of acetaminophen, caffeine and ascorbic acid using a new electrochemical sensor based on CuO-graphene nanocomposite. RSC Advances, 5(115), 95140–95148. https://doi.org/10.1039/C5RA14138A
Kimbrough, R. D. (1976). Toxicity and health effects of selected organotin compounds: a review. Environmental Health Perspectives, 14, 51–56.
Kyaw, A. (1978). A simple colorimetric method for ascorbic acid determination in blood plasma. Clinica Chimica Acta, 86(2), 153–157.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388.
Liu, X., Kim, H., & Guo, L. J. (2013). Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells. Organic Electronics, 14(2), 591–598.
López-Pastor, J.-A., Martínez-Sánchez, A., Aznar-Poveda, J., García-Sánchez, A.-J., García-Haro, J., & Aguayo, E. (2020). Quick and cost-effective estimation of vitamin C in multifruit juices using voltammetric methods. Sensors, 20(3), 676.
Moon, K. M., Kwon, E.-B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), 2754.
Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2, 1–10.
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V, Morozov, S. V, & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453.
Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V, Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., & Geim, A. K. (2007). Room-temperature quantum Hall effect in graphene. Science, 315(5817), 1379.
Oliveira, E. J., & Watson, D. G. (2001). Chromatographic techniques for the determination of putative dietary anticancer compounds in biological fluids. Journal of Chromatography B: Biomedical Sciences and Applications, 764(1–2), 3–25.
Silva, F. O. (2005). Total ascorbic acid determination in fresh squeezed orange juice by gas chromatography. Food Control, 16(1), 55–58.
Stankovich, S., Piner, R. D., Chen, X., Wu, N., Nguyen, S. T., & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16(2), 155–158.
Toh, S. Y., Loh, K. S., Kamarudin, S. K., & Daud, W. R. W. (2014). Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation. Chemical Engineering Journal, 251, 422–434. https://doi.org/10.1016/j.cej.2014.04.004
Versari, A., Mattioli, A., Parpinello, G. P., & Galassi, S. (2004). Rapid analysis of ascorbic and isoascorbic acids in fruit juice by capillary electrophoresis. Food Control, 15(5), 355–358.
Vissers, M. C. M., Carr, A. C., Pullar, J. M., & Bozonet, S. M. (2013). The bioavailability of vitamin C from kiwifruit. Advances in Food and Nutrition Research, 68, 125–147.
Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C, 112(22), 8192–8195.
Wang, H., Du, J., Yao, Z., Yue, R., Zhai, C., Jiang, F., Du, Y., Wang, C., & Yang, P. (2013). Facile fabrication, characterization of Pt–Ru nanoparticles modified reduced graphene oxide and its high electrocatalytic activity for methanol electro-oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 57–61.
Washko, P. W., Hartzell, W. O., & Levine, M. (1989). Ascorbic acid analysis using high-performance liquid chromatography with coulometric electrochemical detection. Analytical Biochemistry, 181(2), 276–282.
Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2(7), 1487–1491.
Yang, P., Gao, X., Wang, L., Wu, Q., Chen, Z., & Lin, X. (2014). Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Microchimica Acta, 181(1–2), 231–238. https://doi.org/10.1007/s00604-013-1104-6