A New Inertial Subgradient Projection Algorithm for Solving Pseudomonotone Equilibrium Problems
Nội dung chính của bài viết
Tóm tắt
In this paper, we introduce a new inertial subgradient projection algorithm for finding a solution of an equilibrium problem in a real Hilbert space. The proposed algorithm combines subgradient projection methods with the self-adaptive and inertial techniques to generate iteration sequences. The convergent theorem are established under mild assumptions. Several fundamental experiments are shown to illustrate our algorithm.
Chi tiết bài viết
Từ khóa
Equilibrium problem, subgradient, projection, pseudomonotone, self adaptive stepsize, inertial technique
Tài liệu tham khảo
Bauschke, H., & Combettes, P. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011. CMS books in mathematics). DOI, 10, 978-971.
Blum, E. (1994). From optimization and variational inequalities to equilibrium problems. Math. student, 63, 123-145.
Hung, P. G. (2011). The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Analysis: Theory, Methods & Applications, 74(17), 6121-6129.
Khoa, N. M., & Van Thang, T. (2022). Approximate projection algorithms for solving equilibrium and multivalued variational inequality problems in Hilbert space. 대한수학회보, 59(4), 1019-1044.
Konnov, I. (2001). Combined relaxation methods for variational inequalities (Vol. 495). Springer Science & Business Media.
Korpelevich, G. (1977). Extragradient method for finding saddle points and other problems. Matekon, 13(4), 35-49.
Oggioni, G., Smeers, Y., Allevi, E., & Schaible, S. (2012). A generalized Nash equilibrium model of market coupling in the European power system. Networks and Spatial Economics, 12, 503-560.
Tyrrell Rockafellar, R. (1970). Convex analysis. Princeton mathematical series, 28.
Van Thang, T. (2022). Inertial Subgradient Projection Algorithms Extended to Equilibrium Problems. Bulletin of the Iranian Mathematical Society, 48(5), 2349-2370.
Van Thang, T., & Khoa, N. M. (2022). Halpern Subgradient Method for Pseudomonotone Equilibrium Problems in Hilbert Space. Kyungpook Mathematical Journal, 62(3).