Capillary Waves at Cylindrical Interface of Two Immiscible Bose-Einstein Condensates
Nội dung chính của bài viết
Tóm tắt
By means of the hydrodynamic approach within the Gross-Pitaevskii (GP) theory, dispersion relation of Numbu-Goldstone modes at the interface of the system was found out. While component 1 of the system motion parallel to the interface the dispersion relations is of phonon (w ~ k) and furthermore, the system becomes unstable for k < R0 -1 .
Chi tiết bài viết
Từ khóa
Hydrodynamic, Gross-Pitaevskii, iInterface, Nambu-Goldstone
Tài liệu tham khảo
E. Timmermans, Phase Separation of Bose-Einstein Condensates, Phys.Rev.Lett. 81, 5718 (1998). https://doi.org/10.1103/PhysRevLett.81.5718.
P.Ao and S.T. Chui,, Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases, Phys.Rev. A 58, 4836 (1998). https://doi.org/10.1103/PhysRevA.58.4836.
C.J.Myatt, E.A.Burt, R.W.Ghrist, E.A.Cornell and C.E.Wieman, Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling, Phys.Rev.Lett. 78, 586 (1997). https://doi.org/10.1103/PhysRevLett.78.586.
D.M.Stamper-Kurn, M.R.Andrews, A.P.Chikkatur, S.Inouye, H.-J. Miesner, J.Stenger and W.Ketterle, Optical Confinement of a Bose-Einstein Condensate, Phys.Rev.Lett. 80, 2027 (1998). https://doi.org/10.1103/PhysRevLett.80.2027.
D.S.Hall, M.R.Matthews, J.R.Ensher, C.E.Wieman and E.A.Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Phys.Rev.Lett. 81, 1539 (1998). https://doi.org/10.1103/PhysRevLett.81.1539.
D. S. Hall, M.R.Matthews, C.E.Wieman and E.A.Cornell, Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys.Rev.Lett. 81, 1543 (1998). https://doi.org/10.1103/PhysRevLett.81.1543.
Stenger, J., Inouye, S., Stamper-Kurn, D. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998). https://doi.org/10.1038/24567.
H.Takeuchi, N.Suzuki, K.Kasamatsu, H. Saito and M.Tsubota, Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates, Phys.Rev. B 81, 094517 (2010). https://doi.org/10.1103/PhysRevB.81.094517.
K.Sasaki, N.Suzuki and H.Saito, Capillary instability in a two-component Bose-Einstein condensate, Phys.Rev. A 83, 053606 (2011). https://doi.org/10.1103/PhysRevA.83.053606
A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov and M. Marklund, Dynamics of a classical gas including dissipative and mean-field effects, Phys.Rev. A 82, 043608 (2010). https://doi.org/10.1103/PhysRevA.68.043608.
B.Van Schaeybroeck, Interface tension of Bose-Einstein condensates, Phys.Rev. A 78, 023624 (2008). https://doi.org/10.1103/PhysRevA.78.023624
L.D.Landau and E.M.Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1987).
Joseph O. Indekeu, Nguyen Van Thu, Chang-You Lin, and Tran Huu Phat, Capillary-wave dynamics and interface structure modulation in binary Bose-Einstein condensate mixtures, Physical Review A 97, 043605 (2018). https://doi.org/10.1103/PhysRevA.97.043605.
H.Takeuchi and K.Kasamatsu, Bound states of dark solitons and vortices in trapped multidimensional Bose-Einstein condensates, Phys.Rev. A 88, 043612 (2013). https://doi.org/10.1103/PhysRevA.98.043612.
P.Ao and S.T. Chui,, Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases, Phys.Rev. A 58, 4836 (1998). https://doi.org/10.1103/PhysRevA.58.4836.
C.J.Myatt, E.A.Burt, R.W.Ghrist, E.A.Cornell and C.E.Wieman, Production of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling, Phys.Rev.Lett. 78, 586 (1997). https://doi.org/10.1103/PhysRevLett.78.586.
D.M.Stamper-Kurn, M.R.Andrews, A.P.Chikkatur, S.Inouye, H.-J. Miesner, J.Stenger and W.Ketterle, Optical Confinement of a Bose-Einstein Condensate, Phys.Rev.Lett. 80, 2027 (1998). https://doi.org/10.1103/PhysRevLett.80.2027.
D.S.Hall, M.R.Matthews, J.R.Ensher, C.E.Wieman and E.A.Cornell, Dynamics of Component Separation in a Binary Mixture of Bose-Einstein Condensates, Phys.Rev.Lett. 81, 1539 (1998). https://doi.org/10.1103/PhysRevLett.81.1539.
D. S. Hall, M.R.Matthews, C.E.Wieman and E.A.Cornell, Measurements of Relative Phase in Two-Component Bose-Einstein Condensates, Phys.Rev.Lett. 81, 1543 (1998). https://doi.org/10.1103/PhysRevLett.81.1543.
Stenger, J., Inouye, S., Stamper-Kurn, D. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998). https://doi.org/10.1038/24567.
H.Takeuchi, N.Suzuki, K.Kasamatsu, H. Saito and M.Tsubota, Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates, Phys.Rev. B 81, 094517 (2010). https://doi.org/10.1103/PhysRevB.81.094517.
K.Sasaki, N.Suzuki and H.Saito, Capillary instability in a two-component Bose-Einstein condensate, Phys.Rev. A 83, 053606 (2011). https://doi.org/10.1103/PhysRevA.83.053606
A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov and M. Marklund, Dynamics of a classical gas including dissipative and mean-field effects, Phys.Rev. A 82, 043608 (2010). https://doi.org/10.1103/PhysRevA.68.043608.
B.Van Schaeybroeck, Interface tension of Bose-Einstein condensates, Phys.Rev. A 78, 023624 (2008). https://doi.org/10.1103/PhysRevA.78.023624
L.D.Landau and E.M.Lifshitz, Fluid Mechanics, 2nd ed. (Butterworth-Heinemann, Oxford, 1987).
Joseph O. Indekeu, Nguyen Van Thu, Chang-You Lin, and Tran Huu Phat, Capillary-wave dynamics and interface structure modulation in binary Bose-Einstein condensate mixtures, Physical Review A 97, 043605 (2018). https://doi.org/10.1103/PhysRevA.97.043605.
H.Takeuchi and K.Kasamatsu, Bound states of dark solitons and vortices in trapped multidimensional Bose-Einstein condensates, Phys.Rev. A 88, 043612 (2013). https://doi.org/10.1103/PhysRevA.98.043612.