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In Silico Identification of Novel Dipeptidyl
Peptidase 4 Inhibitors Via Pharmacophore-Guided
Virtual Screening.

Khanh Huyen Thi Pham?, Huynh Van Thi Nguyen®, Tan Khanh Nguyen®

Abstract:

Dipeptidyl peptidase 4 (DPP4) plays a crucial role in glucose metabolism and is a validated
therapeutic target for type 2 diabetes mellitus. Despite the availability of several DPP4 inhibitors,
the discovery of novel scaffolds with improved safety and pharmacokinetic profiles remains
an unmet need. In this study, a structure-based pharmacophore model integrating key
interaction features of saxagliptin and vildagliptin was constructed and applied to screen the
Enamine database, aiming to identify new chemotypes distinct from existing inhibitors. The
top hits were prioritized through molecular docking, drug-likeness assessment, and ADMET
prediction. Among them, compound 3 emerged as anovellead scaffold, showing strong binding
affinity (-9.5 kcal/mol) and stable interactions with critical catalytic residues, including
Ser630 and Tyr547. SwissADME analysis indicated favorable oral pharmacokinetics with high
gastrointestinal absorption and no BBB penetration. Toxicity prediction suggested low acute
toxicity (LDso = 1500 mg/kg, Class 4), with minimal hepatic and cardiac risks. Overall, this
work introduces a computationally validated pharmacophore-driven strategy to identify
new DPP4 inhibitor scaffolds, providing a promising starting point for further experimental

optimization.
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Introduction

Diabetes mellitus has become a major global public health issue, contributing
significantly to illness, disability, and mortality worldwide, with both incidence and
prevalence continuing to rise rapidly (Bourne, 2023). According to the International
Diabetes Federation (IDF) Atlas, around 537 million adults (aged 20-79) were living with
diabetes in 2021, and this number is projected to reach 783 million by 2045 (Magliano et al.,
2021). The causes of this epidemic are multifactorial, overweight and obesity, unhealthy
diets, and physical inactivity play crucial roles in disease development, along with genetic
and epigenetic predispositions (Zheng et al., 2018). However, diabetes can be prevented
and effectively managed through a balanced diet, regular physical activity, maintaining a
healthy weight, avoiding tobacco use, and appropriate medication and routine screening
to detect and manage complications early. In recent years, extensive research has also
focused on discovering novel drugs and enzyme inhibitors, to improve glycemic control
and reduce diabetes-related complications.

The Dipeptidyl peptidase (DPP) enzyme family includes Dipeptidyl peptidase 4
(DPP4), Fibroblast activation protein-a (FAP), Dipeptidyl peptidase 7 (DPP7), Dipeptidyl
peptidase 8 (DPP8) Dipeptidyl peptidase 9 (DPP9), and Prolylcarboxypeptidase (PCP),
among which DPP4 is a serine protease widely expressed on the surface of endothelial
cells, lymphocytes, and various other tissues (Edwards et al., 2012; Gass & Khosla, 2007;
Holst & Deacon, 1998; Polgar & Szeltner, 2008; Rea & Fiilop, 2006; Stonehouse et al., 2012).
DPP4 catalyzes the cleavage of N-terminal dipeptides containing proline or alanine from
peptide substrates, leading to the inactivation of the incretin hormones GLP-1 and GIP
(Darmoul et al., 1990). These hormones stimulate insulin secretion from pancreatic B-cells,
suppress glucagon release from o-cells, and reduce hepatic glucose production (Deacon,
2019; Whalley et al., 2011). Therefore, inhibition of DPP4 prolongs incretin activity,
enhances glucose-dependent insulin secretion, and improves overall glycemic control
(Campbell & Drucker, 2013). This inhibitory mechanism has become a well-established
therapeutic strategy for developing antidiabetic drugs, particularly for patients with type 2
diabetes who do not achieve adequate glycemic control with conventional treatments such
as metformin or sulfonylureas (Green et al., 2006; Yin et al., 2022).

DPP4 inhibitors, commonly known as gliptins, include several FDA-approved
drugs such as sitagliptin, saxagliptin, linagliptin, and alogliptin, along with others used
in Europe and Asia such as vildagliptin, gemigliptin, anagliptin, teneligliptin, trelagliptin,
omarigliptin, evogliptin, and gosogliptin (Baetta & Corsini, 2011; Green et al., 2006; Yin et
al.,, 2022). Among them, saxagliptin (SAX) and vildagliptin (VIL) act as reversible covalent
inhibitors, forming an imidate adduct with the Ser630 residue at the DPP4 catalytic site,
which enhances potency and minimizes side effects compared to non-covalent inhibitors
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(Nabeno et al., 2013; Sutanto et al., 2020). The inhibition mechanism involves the catalytic
triad Ser630-His740-Asp708, where His740 facilitates proton transfer and Tyr547 stabilizes
the imidate intermediate (Berger et al., 2018; Wang et al., 2019). The distinct hydrolysis
behavior between SAX (reversible reaction) and VIL (irreversible reaction) may account
for the superior efficacy and safety profile of VIL, suggesting that new DPP4 inhibitors
modeled on the VIL scaffold could offer improved pharmacological potential (He et al.,
2009).

Research on Dipeptidyl Peptidase-4 (DPP4) inhibitors has achieved significant
progress; however, thereremains an urgentneed to identify bioactive compounds withnovel
chemical scaffolds, enhanced efficacy, and improved pharmacokinetic profiles. To address
this gap, the present study introduces a novel approach by employing the Pharmit platform
to construct a structure-based pharmacophore model. This model was derived from the key
structural and electronic features of two well-established DPP4 inhibitors, SAX) and VIL.
The resulting pharmacophore was subsequently used to screen potential compounds from
the Enamine commercial library, with the primary objective of discovering novel DPP4
inhibitors. The selected hits from the in silico screening were further subjected to expanded
and complementary analyses compared to previous studies, including molecular docking
to evaluate binding affinity, assessment based on Lipinski’s rule of five, and prediction of
ADMET parameters (absorption, distribution, metabolism, excretion, and toxicity). The
ultimate goal of this workflow was to identify the most promising candidates exhibiting
strong binding affinity, favorable pharmacokinetic properties, and potential efficacy as
DPP4 inhibitors.

Materials and Methods
Pharmacophore Designing/Modeling

In this study, a structure-based pharmacophore model was constructed for the active
site of DPP4 (PDB ID: 6B1E) using two active inhibitors, SAX and VIL, as reference ligands.
The pharmacophore was generated through the freely accessible web server Pharmit
(pharmit.csb.pitt.edu, accessed on October 20, 2025). The resulting model comprised eight
key features, including three hydrogen donors, four hydrogen acceptors, and one central
hydrophobic site (Table 1). These features were spatially arranged to capture the essential
interactions within the DPP4 active pocket. The hydrogen bond donor and acceptor groups
were primarily distributed around the coordinates (35-43 A), corresponding to regions
capable of forming strong polar interactions with catalytic residues such as Ser630 and
His740. The hydrophobic feature located near (35.3, 48.4, 35.3) represented a nonpolar
pocket that contributes to ligand core stabilization.
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Table 1. Pharmacophore features generated
from active DPP4 inhibitors (SAX and VIL).

No. Feature Type Coordinates (x, y, z) Radius (r)
1 Hydrogen Donor 1 (35.9,48.7, 38.5) 1.0
2 Hydrogen Donor 2 (39.2, 52.0, 35.0) 1.0
3 Hydrogen Donor 3 (42.5, 54.5, 37.6) 1.0
4 Hydrogen Acceptor 1 (35.9,48.7, 38.5) 1.0
5 Hydrogen Acceptor 2 (39.2, 52.0, 35.0) 1.0
6 Hydrogen Acceptor 3 (36.8, 52.0, 36.4) 1.0
7 Hydrogen Acceptor 4 (42.5,54.5, 37.6) 1.0
8 Hydrophobic (35.3, 48.4, 35.3) 1.0

Pharmacophore-Based Virtual Screening

In computational drug discovery pipelines, pharmacophore-based virtual screening
serves as a crucial step for identifying potential lead compounds from large chemical
libraries against a specific biological target. Several tools and web servers have been
developed for this purpose, among which Pharmit stands out as a freely accessible
platform that enables interactive screening based on pharmacophore models or molecular
shape, ranking hits according to minimized energy scores (Sunseri & Koes, 2016). Using
this platform, extensive compound databases can be efficiently filtered according to
their spatial and electronic features derived from known ligands. In the present study,
the Enamine database (enaminestore.com, accessed on October 20, 2025) was employed
for virtual screening. This commercially available library contains 60,516,302 conformers
representing 4,117,328 molecules, allowing for the identification of compounds structurally
compatible with the pharmacophore model generated from SAX and VIL. The top-ranked
compounds obtained from this screening process are summarized in Table 2.

Table 2. Top-ranked compounds obtained from pharmacophore-based
virtual screening using Pharmit

No. Compound ID RMSD | Molecular Mass (Da) Nugfneéso(fRI;o;ztsa;ble
1 74877467597 0.453 317 8
2 71552200029 0.561 765 7
3 74206100050 0.616 367 7
4 72053669773 0.654 294 3
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No. Compound ID RMSD | Molecular Mass (Da) Nug:};f;:{;gﬁzt;ble
5 78333350340 0.675 373 7
6 74421993557 0.708 371 5
7 74392288899 0.758 276 4

Modecular docking

Protein and ligand preparation: The 3D structure of DPP4 (PDB ID: 6B1E) was retrieved
from the Protein Data Bank. Following the established protocol in our previous study, all
crystallographic water molecules, co-crystallized ligands, and heteroatoms were removed
using Discovery Studio 2020 (Nguyen et al., 2025). Polar hydrogens and Kollman charges
were subsequently added with Autodock Tool (version 1.5.6) (Morris et al., 2009), and the
processed structure was saved in pdbqt format for docking simulations. The 3D structures
of the top-ranked compounds were obtained from the PubChem database. Each ligand was
energy-minimized, protonated, and converted into pdbqt format using Open Babel 3.1.1.

Molecular docking was carried out with AutoDock Vina 1.2.4 to predict the binding
affinity and pose of the ligands within the DPP4 active site. The docking grid was centered
on the catalytic pocket of DPP4, with the following parameters after the center position
was determined: size_x: 21, size_y: 21, size_z: 21, center_x: 41 , center_y: 50, center_z: 35..
Docking scores were reported in kcal/mol to evaluate ligand binding affinity. The binding
interactions and conformational poses of the protein-ligand complexes were visualized
and analyzed using BIOVIA Discovery Studio Visualizer 2020.

Drug-Likeness, ADME, and Toxicity Prediction

The top-ranked compound with the most favorable docking score was further
evaluated for its pharmacokinetic and drug-likeness properties. Lipinski’s Rule of Five was
applied to assess its oral bioavailability and overall suitability as a drug-like molecule. The
compound’s absorption, distribution, metabolism, and excretion (ADME) characteristics
were analyzed using the SwissADME web server (Daina et al., 2017). In addition, the
ProTox-3.0 prediction platform was employed to estimate potential organ-specific toxicities
and safety profiles (Banerjee et al., 2024). These computational evaluations provided
insights into the compound’s pharmacological behavior and its potential as a promising
DPP4 inhibitor candidate.
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Results and Discussion

Molecular docking analysis

All seven candidate compounds were docked into the active site of DPP4, and their

binding affinities and interaction profiles were analyzed in detail (Table 3). The docking

scores ranged from -6.8 to -9.5 kcal/mol, suggesting moderate to strong binding affinities

toward the target enzyme. Among them, compound 3 exhibited the lowest docking energy

(-9.5 kcal/mol), indicating the most stable and favorable binding conformation within the
catalytic pocket of DPP4.

Table 3. Molecular docking results of selected compounds with DPP4

) Docking
No Structure Hydrogen bond H.ydroph'oblc score
interaction
(kcal/mol)
Glu205, Tyr666,
1 Glu206, Glu205, |His740, Val711, -7.9
Tyr547, Ser630 Tyr631, Val656,
Trp659
5 E]) Glu206, Glu205, |Tyr666, Arg358, -6.8
Cé Tyr547, Phe357 | Phe357
Glu206, TyrSA7, | 1 r666, His740 95
3 )H/\(Q Ser630, Tyr662, Arg358’ P he357’
Asn710 '
) Glu206, Glu205,
1 - Tyr662, Asn710, |Tyr666, His740, -8.3
Val711, Tyr547, |Phe357
Ser630,
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) Docking
Hydrophobic
No Structure Hydrogen bond . ) score
interaction
(kcal/mol)
C§ [\ |Glu206,Glu205, | 76
5 . " X His740, Phe357
Tyr662, Ser630,
Glu206, Tyr547,
Phe357, Glu205, -7.9
6 Tyr662, Ser630,
. Argl25
His740, Arg125
Tyr547, Tyr662,
y y Tyr666, Phe357, 6.9
7 Ser630, His740,
_ /I Argl25
Glu205,

Compound 3 formed multiple hydrogen bonds with key residues Glu206, Tyr547,
Ser630, Tyr662, and Asn710, which are known to play essential roles in substrate recognition
and catalytic activity. In addition, several hydrophobic interactions were observed with
Tyr666, His740, Arg358, and Phe357, contributing to the stabilization of the ligand-protein
complex. The presence of these interactions suggests that compound 3 effectively anchors
within the active site and may interfere with the catalytic function of DPP4.

Notably, the involvement of Ser630, a core residue of the DPP4 catalytic machinery,
indicates that compound 3 may act through a competitive inhibitory mechanism by
directly blocking substrate access to the active site. Furthermore, interactions with
aromatic residues such as Tyr662 and Tyr666, are commonly associated with potent and
selective DPP4 inhibition. Compared to the other candidates, compound 3 exhibited a
more comprehensive interaction network with catalytically relevant residues, supporting
its superior docking performance.

Overall, the docking results highlight compound 3 as the most promising inhibitor
candidate among the tested molecules, exhibiting both strong binding affinity and
extensive interactions with catalytically relevant residues of DPP4. Therefore, compound
3 was selected for subsequent ADME, toxicity, and molecular docking analyses to further
evaluate its pharmacological potential. These structural features provide a clear rationale
for its selection for subsequent ADME and toxicity analyses.
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Fig 1. Molecular docking visualization of the top-ranked
compound (compound 3) in the active site of DPP4.

(A) Overall 3D structure of DPP4 (PDB ID: 6B1E) showing the binding position of compound
3 within the catalytic pocket. (B) Surface representation of the DPP4 active site illustrating the
binding pose and hydrophobic environment surrounding the ligand. (C) 2D interaction diagram

showing key hydrogen bonds and hydrophobic contacts between compound 3 and critical residues
such as Glu205, Glu206, Tyr547, Ser630, Tyr662, Asn710, His740, and Tyr666.

ADME studies

The pharmacokinetic evaluation of compound 3 using SwissADME revealed favorable
physicochemical and absorption characteristics (Table 4). The compound has a molecular
weight of 373.45 g/mol, Log P of 2.10, and a total polar surface area (TPSA) of 109.82
A2, all of which fall within the optimal range suggested by Lipinski’s Rule of Five. The
absence of any Lipinski violations and moderate lipophilicity indicate that compound 3 is
likely to possess good oral bioavailability and membrane permeability. In terms of ADME
properties, compound 3 demonstrated high gastrointestinal absorption (GI Abs) but was
predicted not to cross the blood-brain barrier (BBB), suggesting limited central nervous
system effects, an advantageous feature for DPP4-targeting antidiabetic agents. It was also
identified as a P-gp substrate, implying potential influence on drug transport. Regarding
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metabolic stability, compound 3 showed selective inhibition of CYP2C19, CYP2D6, and
CYP3A4, while having no inhibitory effects on CYP1A2 and CYP2C9, which suggests a
moderate risk of metabolic interactions.

From a translational perspective, the combination of high GI absorption and lack
of BBB permeability is particularly desirable for antidiabetic drugs, as DPP4 inhibition
is primarily required in peripheral tissues rather than the central nervous system. The
moderate TPSA value further supports efficient intestinal absorption while maintaining
sufficient polarity to limit CNS exposure.

Table 4. Predicted drug-likeness and ADME properties
of compound 3 calculated by SwissADME.

Property Value ADME Prediction Result
Molecular weight (g/mol) 373.45 GI absorption High
Log P 2.10 BBB permeability No
nHBD 4 P-gp substrate Yes
nHBA 4 CYP1A2 inhibitor No
TPSA (A?) 109.82 CYP2C19 inhibitor Yes
MR 110.70 CYP2C9 inhibitor No
Lipinski violation 0 CYP2D6 inhibitor Yes
Log Kp (cm/s) -7.07 CYP3A4 inhibitor Yes
Log S -3.54
nRotB 7

LogP, Log of octanol/water partition coefficient; nHBD, Number of hydrogen bond
donor(s); nHBA, Number of hydrogen bond acceptor(s); TPSA, Total polar surface area;
MR, Molar refractivity; Log Kp, Log of skin permeation; Log S, log of solubility; nRotB,
Number of rotatable bonds; GI Abs, Gastro-intestinal absorption; BBB Per, Blood brain
barrier permeability; P-gp, P-glycoprotein; CYP, cytochrome-P

Overall, compound 3 exhibits a balanced profile of drug-likeness and ADME
characteristics, aligning well with the pharmacokinetic properties expected of orally
active agents. Although the predicted inhibition of certain CYP isoforms may warrant
further optimization to minimize potential drug-drug interactions, these liabilities are
not uncommon among clinically used DPP4 inhibitors. These results support its potential
as a promising DPP4 inhibitor candidate and justify further optimization and biological
validation in subsequent studies.
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Toxicity prediction

The predicted LDso value of compound 3 was 1500 mg/kg, placing it in toxicity class 4,
which indicates a relatively low acute toxicity profile. According to ProTox 3.0 predictions,
the compound was non-hepatotoxic, non-nephrotoxic, and non-cardiotoxic, suggesting a
favorable safety margin for hepatic, renal, and cardiovascular systems. However, it exhibited
potential respiratory toxicity (probability 0.82), implying possible adverse effects on the
respiratory systems at higher concentrations. From a safety assessment standpoint, the
absence of predicted hepatotoxicity and cardiotoxicity is particularly important for chronic
antidiabetic therapy, as long-term DPP4 inhibition requires sustained systemic exposure.
The relatively high LDso value further supports a reasonable therapeutic window at the
acute toxicity level. Overall, compound 3 demonstrates acceptable systemic safety, but the
predicted neurological and respiratory risks warrant further in vitro and in vivo validation
before clinical consideration. Notably, the respiratory toxicity prediction is based on in
silico probability models and may reflect off-target or dose-dependent effects; therefore,
targeted cytotoxicity and organ-specific assays will be essential to confirm these liabilities.

Table 5. Toxicity of Compound 3 Predicted by ProTox 3.0 Prediction Server

Predi Organ toxici
Predicted ;Zjilccit;d & 2l
Respirat
mg/kg Class | Hepatotoxicity | Nephrotoxicity ii)ilit?t;ry Cardiotoxicity
1500 4 Inactive Inactive Active Inactive
(0.51) (0.59) (0.82) (0.68)
Conclusion

This study employed an integrated in silico workflow combining structure-based
pharmacophore screening, molecular docking, and ADMET-toxicity prediction to identify
potential DPP4 inhibitor candidates from a large commercial chemical library. This
computational strategy effectively reduced chemical space and enabled the prioritization
of biologically relevant compounds with favorable drug-like properties. Among the
screened hits, compound 3 exhibited the most favorable binding affinity toward the DPP4
active site, satisfactory compliance with drug-likeness criteria, and an acceptable predicted
safety profile. The consistency of results across multiple computational tools supports the
robustness of the proposed screening framework and highlights its utility as a rational
approach for early-stage DPP4 inhibitor discovery.

Nevertheless, the findings of this study are subject to several limitations. The
conclusions are based solely on computational predictions and therefore require
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experimental validation, including in vitro enzymatic inhibition assays and subsequent in
vivo pharmacological evaluation, to confirm biological activity and therapeutic relevance.
In addition, the selectivity of compound 3 toward DPP4 relative to closely related enzymes
suchas DPP8 and DPP9 was not explicitly evaluated and remains animportant consideration
for safety assessment. Accordingly, future studies will focus on experimental validation,
selectivity profiling, and further structural optimization to improve efficacy and minimize
potential off-target effects. Overall, this work provides a solid computational foundation
for subsequent experimental efforts toward the development of next-generation DPP4

inhibitors.
Abbreviations
DPP: Dipeptidyl peptidase Log Kp: Log of skin permeation LogP: Log of
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