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In Silico Identification of Novel Dipeptidyl 
Peptidase 4 Inhibitors Via Pharmacophore-Guided 
Virtual Screening.
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Abstract:

Dipeptidyl peptidase 4 (DPP4) plays a crucial role in glucose metabolism and is a validated
therapeutic target for type 2 diabetes mellitus. Despite the availability of several DPP4 inhibitors,
the discovery of novel scaffolds with improved safety and pharmacokinetic profiles remains
an unmet need. In this study, a structure-based pharmacophore model integrating key
interaction features of saxagliptin and vildagliptin was constructed and applied to screen the 
Enamine database, aiming to identify new chemotypes distinct from existing inhibitors. The 
top hits were prioritized through molecular docking, drug-likeness assessment, and ADMET
prediction. Among them, compound 3 emerged as a novel lead scaffold, showing strong binding
affinity (-9.5 kcal/mol) and stable interactions with critical catalytic residues, including 
Ser630 and Tyr547. SwissADME analysis indicated favorable oral pharmacokinetics with high
gastrointestinal absorption and no BBB penetration. Toxicity prediction suggested low acute 
toxicity (LD₅₀ = 1500 mg/kg, Class 4), with minimal hepatic and cardiac risks. Overall, this 
work introduces a computationally validated pharmacophore-driven strategy to identify 
new DPP4 inhibitor scaffolds, providing a promising starting point for further experimental
optimization.

Keywords: diabetes mellitus, dipeptidyl peptidase 4 (DPP4), pharmacophore model, computer-aided 
drug discovery, molecular docking

Received: 8.11.2025. Accepted: 15.12.2025. Published: 31.12.2025 
DOI: 10.59907/daujs.4.4.2025.535 

a College of Pharmacy, Dongguk University; Seoul, Republic of Korea.
e-mail: phamthikhanhhuyen22299@gmail.com

b Scientific Management Department, Dong A University; Danang, Vietnam.
e-mail: vannth@donga.edu.vn

c Scientific Management Department, Dong A University; Danang, Vietnam.
e-mail: khanhnt2501@gmail.com

* Corresponding author.

ISSN: 2815 - 5807Dong A University Journal of Science, Vol. 4, Dec 2025, pp. 27-39
©Dong A University, Danang City, Vietnam



28

Introduction

Diabetes mellitus has become a major global public health issue, contributing 
significantly to illness, disability, and mortality worldwide, with both incidence and 
prevalence continuing to rise rapidly (Bourne, 2023). According to the International 
Diabetes Federation (IDF) Atlas, around 537 million adults (aged 20-79) were living with 
diabetes in 2021, and this number is projected to reach 783 million by 2045 (Magliano et al., 
2021). The causes of this epidemic are multifactorial, overweight and obesity, unhealthy 
diets, and physical inactivity play crucial roles in disease development, along with genetic 
and epigenetic predispositions (Zheng et al., 2018). However, diabetes can be prevented 
and effectively managed through a balanced diet, regular physical activity, maintaining a 
healthy weight, avoiding tobacco use, and appropriate medication and routine screening 
to detect and manage complications early. In recent years, extensive research has also 
focused on discovering novel drugs and enzyme inhibitors, to improve glycemic control 
and reduce diabetes-related complications.

The Dipeptidyl peptidase (DPP) enzyme family includes Dipeptidyl peptidase 4 
(DPP4), Fibroblast activation protein-α (FAP), Dipeptidyl peptidase 7 (DPP7), Dipeptidyl 
peptidase 8 (DPP8) Dipeptidyl peptidase 9 (DPP9), and Prolylcarboxypeptidase (PCP), 
among which DPP4 is a serine protease widely expressed on the surface of endothelial 
cells, lymphocytes, and various other tissues (Edwards et al., 2012; Gass & Khosla, 2007; 
Holst & Deacon, 1998; Polgar & Szeltner, 2008; Rea & Fülöp, 2006; Stonehouse et al., 2012). 
DPP4 catalyzes the cleavage of N-terminal dipeptides containing proline or alanine from 
peptide substrates, leading to the inactivation of the incretin hormones GLP-1 and GIP 
(Darmoul et al., 1990). These hormones stimulate insulin secretion from pancreatic β-cells, 
suppress glucagon release from α-cells, and reduce hepatic glucose production (Deacon, 
2019; Whalley et al., 2011). Therefore, inhibition of DPP4 prolongs incretin activity, 
enhances glucose-dependent insulin secretion, and improves overall glycemic control 
(Campbell & Drucker, 2013). This inhibitory mechanism has become a well-established 
therapeutic strategy for developing antidiabetic drugs, particularly for patients with type 2 
diabetes who do not achieve adequate glycemic control with conventional treatments such 
as metformin or sulfonylureas (Green et al., 2006; Yin et al., 2022).

DPP4 inhibitors, commonly known as gliptins, include several FDA-approved 
drugs such as sitagliptin, saxagliptin, linagliptin, and alogliptin, along with others used 
in Europe and Asia such as vildagliptin, gemigliptin, anagliptin, teneligliptin, trelagliptin, 
omarigliptin, evogliptin, and gosogliptin (Baetta & Corsini, 2011; Green et al., 2006; Yin et 
al., 2022). Among them, saxagliptin (SAX) and vildagliptin (VIL) act as reversible covalent 
inhibitors, forming an imidate adduct with the Ser630 residue at the DPP4 catalytic site, 
which enhances potency and minimizes side effects compared to non-covalent inhibitors 
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(Nabeno et al., 2013; Sutanto et al., 2020). The inhibition mechanism involves the catalytic 
triad Ser630-His740-Asp708, where His740 facilitates proton transfer and Tyr547 stabilizes 
the imidate intermediate (Berger et al., 2018; Wang et al., 2019). The distinct hydrolysis 
behavior between SAX (reversible reaction) and VIL (irreversible reaction) may account 
for the superior efficacy and safety profile of VIL, suggesting that new DPP4 inhibitors 
modeled on the VIL scaffold could offer improved pharmacological potential (He et al., 
2009).

Research on Dipeptidyl Peptidase-4 (DPP4) inhibitors has achieved significant 
progress; however, there remains an urgent need to identify bioactive compounds with novel 
chemical scaffolds, enhanced efficacy, and improved pharmacokinetic profiles. To address 
this gap, the present study introduces a novel approach by employing the Pharmit platform 
to construct a structure-based pharmacophore model. This model was derived from the key 
structural and electronic features of two well-established DPP4 inhibitors, SAX) and VIL. 
The resulting pharmacophore was subsequently used to screen potential compounds from 
the Enamine commercial library, with the primary objective of discovering novel DPP4 
inhibitors. The selected hits from the in silico screening were further subjected to expanded 
and complementary analyses compared to previous studies, including molecular docking 
to evaluate binding affinity, assessment based on Lipinski’s rule of five, and prediction of 
ADMET parameters (absorption, distribution, metabolism, excretion, and toxicity). The 
ultimate goal of this workflow was to identify the most promising candidates exhibiting 
strong binding affinity, favorable pharmacokinetic properties, and potential efficacy as 
DPP4 inhibitors.

Materials and Methods

Pharmacophore Designing/Modeling

In this study, a structure-based pharmacophore model was constructed for the active 
site of DPP4 (PDB ID: 6B1E) using two active inhibitors, SAX and VIL, as reference ligands. 
The pharmacophore was generated through the freely accessible web server Pharmit 
(pharmit.csb.pitt.edu, accessed on October 20, 2025). The resulting model comprised eight 
key features, including three hydrogen donors, four hydrogen acceptors, and one central 
hydrophobic site (Table 1). These features were spatially arranged to capture the essential 
interactions within the DPP4 active pocket. The hydrogen bond donor and acceptor groups 
were primarily distributed around the coordinates (35-43 Å), corresponding to regions 
capable of forming strong polar interactions with catalytic residues such as Ser630 and 
His740. The hydrophobic feature located near (35.3, 48.4, 35.3) represented a nonpolar 
pocket that contributes to ligand core stabilization.
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Table 1. Pharmacophore features generated
from active DPP4 inhibitors (SAX and VIL).

No. Feature Type Coordinates (x, y, z) Radius (r)

1 Hydrogen Donor 1 (35.9, 48.7, 38.5) 1.0

2 Hydrogen Donor 2 (39.2, 52.0, 35.0) 1.0

3 Hydrogen Donor 3 (42.5, 54.5, 37.6) 1.0

4 Hydrogen Acceptor 1 (35.9, 48.7, 38.5) 1.0

5 Hydrogen Acceptor 2 (39.2, 52.0, 35.0) 1.0

6 Hydrogen Acceptor 3 (36.8, 52.0, 36.4) 1.0

7 Hydrogen Acceptor 4 (42.5, 54.5, 37.6) 1.0

8 Hydrophobic (35.3, 48.4, 35.3) 1.0

Pharmacophore-Based Virtual Screening

In computational drug discovery pipelines, pharmacophore-based virtual screening 
serves as a crucial step for identifying potential lead compounds from large chemical 
libraries against a specific biological target. Several tools and web servers have been 
developed for this purpose, among which Pharmit stands out as a freely accessible 
platform that enables interactive screening based on pharmacophore models or molecular 
shape, ranking hits according to minimized energy scores (Sunseri & Koes, 2016). Using 
this platform, extensive compound databases can be efficiently filtered according to 
their spatial and electronic features derived from known ligands. In the present study, 
the Enamine database (enaminestore.com, accessed on October 20, 2025) was employed 
for virtual screening. This commercially available library contains 60,516,302 conformers 
representing 4,117,328 molecules, allowing for the identification of compounds structurally 
compatible with the pharmacophore model generated from SAX and VIL. The top-ranked 
compounds obtained from this screening process are summarized in Table 2.

Table 2. Top-ranked compounds obtained from pharmacophore-based 
virtual screening using Pharmit

No. Compound ID RMSD Molecular Mass (Da) Number of Rotatable 
Bonds (RBnds)

1 Z4877467597 0.453 317 8

2 Z1552200029 0.561 765 7

3 Z4206100050 0.616 367 7

4 Z2053669773 0.654 294 3
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No. Compound ID RMSD Molecular Mass (Da) Number of Rotatable 
Bonds (RBnds)

5 Z8333350340 0.675 373 7

6 Z4421993557 0.708 371 5

7 Z4392288899 0.758 276 4

Modecular docking

Protein and ligand preparation: The 3D structure of DPP4 (PDB ID: 6B1E) was retrieved 
from the Protein Data Bank. Following the established protocol in our previous study, all 
crystallographic water molecules, co-crystallized ligands, and heteroatoms were removed 
using Discovery Studio 2020 (Nguyen et al., 2025). Polar hydrogens and Kollman charges 
were subsequently added with Autodock Tool (version 1.5.6) (Morris et al., 2009), and the 
processed structure was saved in pdbqt format for docking simulations. The 3D structures 
of the top-ranked compounds were obtained from the PubChem database. Each ligand was 
energy-minimized, protonated, and converted into pdbqt format using Open Babel 3.1.1.

Molecular docking was carried out with AutoDock Vina 1.2.4 to predict the binding 
affinity and pose of the ligands within the DPP4 active site. The docking grid was centered 
on the catalytic pocket of DPP4, with the following parameters after the center position 
was determined: size_x: 21, size_y: 21, size_z: 21, center_x: 41 , center_y: 50, center_z: 35.. 
Docking scores were reported in kcal/mol to evaluate ligand binding affinity. The binding 
interactions and conformational poses of the protein-ligand complexes were visualized 
and analyzed using BIOVIA Discovery Studio Visualizer 2020.

Drug-Likeness, ADME, and Toxicity Prediction

The top-ranked compound with the most favorable docking score was further 
evaluated for its pharmacokinetic and drug-likeness properties. Lipinski’s Rule of Five was 
applied to assess its oral bioavailability and overall suitability as a drug-like molecule. The 
compound’s absorption, distribution, metabolism, and excretion (ADME) characteristics 
were analyzed using the SwissADME web server (Daina et al., 2017). In addition, the 
ProTox-3.0 prediction platform was employed to estimate potential organ-specific toxicities 
and safety profiles (Banerjee et al., 2024). These computational evaluations provided 
insights into the compound’s pharmacological behavior and its potential as a promising 
DPP4 inhibitor candidate.
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Results and Discussion

Molecular docking analysis

All seven candidate compounds were docked into the active site of DPP4, and their 
binding affinities and interaction profiles were analyzed in detail (Table 3). The docking 
scores ranged from -6.8 to -9.5 kcal/mol, suggesting moderate to strong binding affinities 
toward the target enzyme. Among them, compound 3 exhibited the lowest docking energy 
(-9.5 kcal/mol), indicating the most stable and favorable binding conformation within the 
catalytic pocket of DPP4.

Table 3. Molecular docking results of selected compounds with DPP4

No Structure Hydrogen bond
Hydrophobic 

interaction

Docking 
score 

(kcal/mol)

1
Glu206, Glu205, 
Tyr547, Ser630

Glu205, Tyr666, 
His740, Val711, 
Tyr631, Val656, 
Trp659

-7.9

2
Glu206, Glu205, 
Tyr547, Phe357

Tyr666, Arg358, 
Phe357

-6.8

3
Glu206, Tyr547, 
Ser630, Tyr662, 
Asn710

Tyr666, His740, 
Arg358, Phe357

-9.5

4

Glu206, Glu205, 
Tyr662, Asn710, 
Val711, Tyr547, 
Ser630,

Tyr666, His740, 
Phe357

-8.3
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No Structure Hydrogen bond
Hydrophobic 

interaction

Docking 
score 

(kcal/mol)

5
Glu206, Glu205, 
Tyr662, Ser630,

His740, Phe357
-7.6

6
Glu206, Tyr547, 
Tyr662, Ser630, 
His740, Arg125

Phe357, Glu205, 
Arg125

-7.9

7
Tyr547, Tyr662, 
Ser630, His740, 
Glu205,

Tyr666, Phe357, 
Arg125

-6.9

Compound 3 formed multiple hydrogen bonds with key residues Glu206, Tyr547, 
Ser630, Tyr662, and Asn710, which are known to play essential roles in substrate recognition 
and catalytic activity. In addition, several hydrophobic interactions were observed with 
Tyr666, His740, Arg358, and Phe357, contributing to the stabilization of the ligand-protein 
complex. The presence of these interactions suggests that compound 3 effectively anchors 
within the active site and may interfere with the catalytic function of DPP4.

Notably, the involvement of Ser630, a core residue of the DPP4 catalytic machinery, 
indicates that compound 3 may act through a competitive inhibitory mechanism by 
directly blocking substrate access to the active site. Furthermore, interactions with 
aromatic residues such as Tyr662 and Tyr666, are commonly associated with potent and 
selective DPP4 inhibition. Compared to the other candidates, compound 3 exhibited a 
more comprehensive interaction network with catalytically relevant residues, supporting 
its superior docking performance.

Overall, the docking results highlight compound 3 as the most promising inhibitor 
candidate among the tested molecules, exhibiting both strong binding affinity and 
extensive interactions with catalytically relevant residues of DPP4. Therefore, compound 
3 was selected for subsequent ADME, toxicity, and molecular docking analyses to further 
evaluate its pharmacological potential. These structural features provide a clear rationale 
for its selection for subsequent ADME and toxicity analyses.
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Fig 1. Molecular docking visualization of the top-ranked
compound (compound 3) in the active site of DPP4.

(A) Overall 3D structure of DPP4 (PDB ID: 6B1E) showing the binding position of compound 
3 within the catalytic pocket. (B) Surface representation of the DPP4 active site illustrating the 
binding pose and hydrophobic environment surrounding the ligand. (C) 2D interaction diagram 
showing key hydrogen bonds and hydrophobic contacts between compound 3 and critical residues 

such as Glu205, Glu206, Tyr547, Ser630, Tyr662, Asn710, His740, and Tyr666.

ADME studies

The pharmacokinetic evaluation of compound 3 using SwissADME revealed favorable 
physicochemical and absorption characteristics (Table 4). The compound has a molecular 
weight of 373.45 g/mol, Log P of 2.10, and a total polar surface area (TPSA) of 109.82 
Å², all of which fall within the optimal range suggested by Lipinski’s Rule of Five. The 
absence of any Lipinski violations and moderate lipophilicity indicate that compound 3 is 
likely to possess good oral bioavailability and membrane permeability. In terms of ADME 
properties, compound 3 demonstrated high gastrointestinal absorption (GI Abs) but was 
predicted not to cross the blood-brain barrier (BBB), suggesting limited central nervous 
system effects, an advantageous feature for DPP4-targeting antidiabetic agents. It was also 
identified as a P-gp substrate, implying potential influence on drug transport. Regarding 



35

metabolic stability, compound 3 showed selective inhibition of CYP2C19, CYP2D6, and 
CYP3A4, while having no inhibitory effects on CYP1A2 and CYP2C9, which suggests a 
moderate risk of metabolic interactions.

From a translational perspective, the combination of high GI absorption and lack 
of BBB permeability is particularly desirable for antidiabetic drugs, as DPP4 inhibition 
is primarily required in peripheral tissues rather than the central nervous system. The 
moderate TPSA value further supports efficient intestinal absorption while maintaining 
sufficient polarity to limit CNS exposure.

Table 4. Predicted drug-likeness and ADME properties 
of compound 3 calculated by SwissADME.

Property Value ADME Prediction Result

Molecular weight (g/mol) 373.45 GI absorption High

Log P 2.10 BBB permeability No

nHBD 4 P-gp substrate Yes

nHBA 4 CYP1A2 inhibitor No

TPSA (Å²) 109.82 CYP2C19 inhibitor Yes

MR 110.70 CYP2C9 inhibitor No

Lipinski violation 0 CYP2D6 inhibitor Yes

Log Kp (cm/s) -7.07 CYP3A4 inhibitor Yes

Log S -3.54

nRotB 7

LogP, Log of octanol/water partition coefficient; nHBD, Number of hydrogen bond 
donor(s); nHBA, Number of hydrogen bond acceptor(s); TPSA, Total polar surface area; 
MR, Molar refractivity; Log Kp, Log of skin permeation; Log S, log of solubility; nRotB, 
Number of rotatable bonds; GI Abs, Gastro-intestinal absorption; BBB Per, Blood brain 
barrier permeability; P-gp, P-glycoprotein; CYP, cytochrome-P

Overall, compound 3 exhibits a balanced profile of drug-likeness and ADME 
characteristics, aligning well with the pharmacokinetic properties expected of orally 
active agents. Although the predicted inhibition of certain CYP isoforms may warrant 
further optimization to minimize potential drug-drug interactions, these liabilities are 
not uncommon among clinically used DPP4 inhibitors. These results support its potential 
as a promising DPP4 inhibitor candidate and justify further optimization and biological 
validation in subsequent studies.
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Toxicity prediction

The predicted LD₅₀ value of compound 3 was 1500 mg/kg, placing it in toxicity class 4, 
which indicates a relatively low acute toxicity profile. According to ProTox 3.0 predictions, 
the compound was non-hepatotoxic, non-nephrotoxic, and non-cardiotoxic, suggesting a 
favorable safety margin for hepatic, renal, and cardiovascular systems. However, it exhibited 
potential respiratory toxicity (probability 0.82), implying possible adverse effects on the 
respiratory systems at higher concentrations. From a safety assessment standpoint, the 
absence of predicted hepatotoxicity and cardiotoxicity is particularly important for chronic 
antidiabetic therapy, as long-term DPP4 inhibition requires sustained systemic exposure. 
The relatively high LD₅₀ value further supports a reasonable therapeutic window at the 
acute toxicity level. Overall, compound 3 demonstrates acceptable systemic safety, but the 
predicted neurological and respiratory risks warrant further in vitro and in vivo validation 
before clinical consideration. Notably, the respiratory toxicity prediction is based on in 
silico probability models and may reflect off-target or dose-dependent effects; therefore, 
targeted cytotoxicity and organ-specific assays will be essential to confirm these liabilities.

Table 5. Toxicity of Compound 3 Predicted by ProTox 3.0 Prediction Server

Predicted  
mg/kg

Predicted 
Toxicity 

Class

Organ toxicity

Hepatotoxicity Nephrotoxicity
Respiratory 

toxicity
Cardiotoxicity

1500 4
Inactive

(0.51)
Inactive

(0.59)
Active
(0.82)

Inactive
(0.68)

Conclusion

This study employed an integrated in silico workflow combining structure-based 
pharmacophore screening, molecular docking, and ADMET-toxicity prediction to identify 
potential DPP4 inhibitor candidates from a large commercial chemical library. This 
computational strategy effectively reduced chemical space and enabled the prioritization 
of biologically relevant compounds with favorable drug-like properties. Among the 
screened hits, compound 3 exhibited the most favorable binding affinity toward the DPP4 
active site, satisfactory compliance with drug-likeness criteria, and an acceptable predicted 
safety profile. The consistency of results across multiple computational tools supports the 
robustness of the proposed screening framework and highlights its utility as a rational 
approach for early-stage DPP4 inhibitor discovery.

Nevertheless, the findings of this study are subject to several limitations. The 
conclusions are based solely on computational predictions and therefore require 
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experimental validation, including in vitro enzymatic inhibition assays and subsequent in 
vivo pharmacological evaluation, to confirm biological activity and therapeutic relevance. 
In addition, the selectivity of compound 3 toward DPP4 relative to closely related enzymes 
such as DPP8 and DPP9 was not explicitly evaluated and remains an important consideration 
for safety assessment. Accordingly, future studies will focus on experimental validation, 
selectivity profiling, and further structural optimization to improve efficacy and minimize 
potential off-target effects. Overall, this work provides a solid computational foundation 
for subsequent experimental efforts toward the development of next-generation DPP4 
inhibitors.
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