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A Geometric Characterization of Extremal Sets
in a  Hemi-Sphere of S∞.

Nguyen Van Ana, Tran An Haib*

Abstract:

The paper deals with unit sphere S∞  of a Hilbert space endowed with natural spherical metric. In the paper 
we give a geometric characterization of extremal sets contained in a hemi-sphere of S∞  that generalizes previ-
ously known results with respect to the classical Jung theorem.
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Introduction 

Let  be a metric space. For a non-empty bounded subset  of  we denote by  
its diameter and by  the Chebyshev radius of , i.e. , 
where  is the radius of  with respect to a point .
A point  is called a Chebyshev center of  if . For a Banach space  
with metric naturally generated by its norm  the Jung constant of  is defined by 

A bounded subset  of  with  is said to be a extremal if  
(V Nguen-Khac & K Nguen-Van, 2006). Since  possesses a linear structure one sees that 
in the definition above the supremum can be taken over all subsets  of  with . 
In the case of a metric space  without linear structure we consider for  the Jung 
function  of  defined as follows 

A bounded subset  of  with  is said to be -extremal, if  and 
, and  is said to be extremal, if it is -extremal for some . For an 

-dimensional Euclidean space  the Jung theorem asserts (Heinrich Jung, 1899) that 

Furthermore a bounded subset  of  is an extremal if and only if  contains all 
vertices of a regular -simplex with with edges of length . For a Hilbert space  (the 
infinite-dimensional case) the Jung constant of  were determined in (NA Routledge, 
1952) ( c.f. (Josef Daneš, 1984)) . The main result of (V Nguen-Khac & K Nguen-
Van, 2006) gives a geometric characterization extremal sets in a Hilbert space which is an 
infinite-dimensional version of classical Jung’s theorem. Our next aim is to treat the case of 

 which is the unit sphere of a Hilbert space endowed the spherical metric. We describe 
the Jung’s function  and give a geometric characterization of -extremal sets in a 
hemi-sphere of . The main results of this paper is a generalization of (V Nguen-Khac & 
K Nguen-Van, 2006) for the case , which also infinite-dimensional extension of the result 
of (Boris V Dekster, 1995). It should be note that in (Boris V Dekster, 1995) Dekster gave a 
version of the classical Jung theorem for unit sphere  of - dimensional Euclidean 
space with spherical metric. He partially extended his result for Alexandrov spaces of 
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curvature bounded above. Also Lang and Schoreder (Urs Lang & Viktor Schroeder, 1997) 
gave an upper estimate for the radius of a bounded subset of a  space in terms of 
its diameter. Our main results are Theorem 1.1, Theorem 1.2 and Theorem 1.3 stated below. 

Theorem 1.1 For every  we have 

where 

Theorem 1.2 Let  be a subset of a hemi-sphere of  with Chebyshev radius  
and diameter . Then  is -extremal if and only if for every , for every positive 
integer  there exists a subset  of  such that  for 
all , where  denotes the natural spherical metric. 

Theorem 1.3 Let  be an extremal set in a hemi-sphere of  with . Then we have 
 and . Here  and  denote the Kuratowski and Hausdorff 

measures of non-compactness of  in metric space  which are defined as inf 
 :  can be covered by finitely many sets of diameter  and inf  :  can 

be covered by finitely many balls of radius , respectively. The paper is organized as 
follows. In  we prove several lemmas related to the properties of Chebyshev centers in 
metric space  that we shall need in what follows. In particular we note that the existence 
and uniqueness of Chebyshev centers for subsets of a hemi-sphere of  are immediate 
from Proposition 3.1 of (Urs Lang & Viktor Schroeder, 1997). The proof of Theorems 1.1, 
1.2 will be given in . There we calculate Jung’s function  via “spherical” technique 
exposed in  and by using our previous result for the case of Hilbert spaces (V Nguen-
Khac & K Nguen-Van, 2006). In the final paragraph we give a proof of Theorem 1.3. As a 
corollary we derive an extension of Gulevich’s result for the hemi-sphere case of .

Notations. Throughout the paper, unless otherwise mentioned, we shall use the 
following notations. 

- For  by  we mean the geodesic arc joining  to  and by  the 
length of . We also denote by  the linear segment joining  to  and  is the 
distance between  and  in . 

- For each  we denote by  the hemi-sphere of  with pole at , by  the 
closed tangent hyperplane of  at . In most of our arguments later  will be considered 
as a Hilbert space with origin at . By  we mean the orthogonal projection  to . The 
image  of a subset  of  under operator  is denoted by . 
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- For a subset  of  with Chebyshev at  and radius , by  (for each 
) we denote the set  and  denotes the image  under . 

Chebyshev center and Mushroom Lemma 

Lemma 2.1 ((Urs Lang & Viktor Schroeder, 1997), Proposition 3.1). Let  be a subset of 
a hemi-sphere of , then there exists a unique point  such that . 

Lemma 2.2. Let  be a subset of a hemi-sphere of  and  is the Chebyshev center of . Then 
, where  is the image of  under  and  denotes the closed convex hull of  in the 

tangent space . Proof. Assume on the contrary that . Then by the Hahn- Banach 
Theorem there exists a closed hyperplane  of the tangent space  separating  from 
. Let  be the point of  closest to  and  be its preimage under the mapping . 
For each point  let us choose  such that  and put 

	

Figure 1

 

We have (see Fig. 1)

It is easy to see that 

or 
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Therefore in view of cosine law for spherical triangles  and by an easy 
computation one gets 

where  is a positive number independence of . Clearly 

for some  and independence of . As  can be taken arbitrarily in  one gets 
 This contradicts to the fact that  is the Chebyshev radius of . So 

. The proof of Lemma 2.2 is completed. Next lemma is a variation of Lemma 2 in 
(V Nguen-Khac & K Nguen-Van, 2006) and Lemma 4 in (Josef Daneš, 1984).

Lemma 2.3 (Mushroom Lemma). Let  be a subset of a hemi-sphere of  with Chebyshev 
center at  and radius . Then for every  we have (i) ; (ii) 

; (iii)  is the Chebyshev center of  in the tangent space . Proof. (i). Suppose on 
contrary that . Then  is not Chebyshev center of . Let  be a Chebyshev 
center of  then  and . Denoting by  the mid-point of  we shall 
prove that 

Setting 

Since  is arbitrarily taken in  and by the cosine law for spherical triangles ,
a direct computation shows that 

or 

Let  be a point strictly inside . We apply the following process of successive 
divisions in half. Let us first divide the arc  in half, then choose the half-arc containing 

, and again divide it in half, and then choose the half-arc containing , etc. until we reach 
 as a mid-point at some step. By the continuity of  in  one obtains 

Now let us fix a point  strictly inside  such that . By  we 
have 
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for  and 

for . Therefore, one can reach that 

This contradicts to the definition of . Hence . (ii) Suppose on 
contrary that . By the Hahn- Banach Theorem there exists a closed hyperplane 

 in tangent space  separating  from . Let  be the point of  closest to  and 
 be its preimage under the mapping , i.e.  . As in the proof of the 

Lemma 2.2 one gets 

Similar as in the proof of (i) above we can find a point  such that .

This is a contradiction. Hence . (iii) Putting , in view of (ii) we deduce 

and 

where  denotes the closed convex hull of  in 
tangent space . If  is not the Chebyshev center of , then there exits a point  in 

 and a positive number  such that 

Let  be the closed hyperlane in tangent space  passing through the mid-point 
of line segment  and orthogonal to . Then  divides  into two half-spaces. Let 
us denote by  and  the closed half- spaces containing  and  respectively. For each 

 it is easy to see that 

Therefore 

and 
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since  On the other hand from (ii) one gets 

since  This implies that  which is a contradiction . So  is the 
Chebyshev center of  in . The proof of Lemma 2.3 is completed.

Lemma 2.4. Let  be a subset of a hemi-sphere of  with Chebyshev center at  and 
radius . For  in  let us denote by  and . Then (i) 

. (ii) If  for  then 

The proof of Lemma 2.4 is immediate by using the cosine law for spherical triangles 
, , and some elementary inequalities. We shall omit it. Combining Lemmas 2.3 and 

2.4 one gets 

Lemma 2.5. Let  be a subset of a hemi-sphere of  with Chebyshev center at  and 
radius . Then for every  we have (i) ; (ii) 

. 

Jung’s function and Jung’s theorem for a hemi-sphere of  

Proof of Theorem 1.1. Assume that  is a subset of  with Chebyshev center at  and 
radius . Putting  one gets  (since the Jung 
constant of a Hilbert space is ). By Lemma 2.5 

Therefore 

Let  be the closed tangent hyperplane of  at . Consider the orthonormal 
sequence  in the hyperplane  of Hilbert space . Putting  
we see that sequence  lie in tangent hyperplane . Let  be its preimage in 
hemi-sphere  under  i.e. . Clearly 
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Let  be a point in . Setting  by the cosine law for spherical 
triangles ,  we have 

Here  denotes the inner product of . Setting  and , 
since the sequence  converges weakly to 0, from (3.1) one gets 

So  and 

We conclude that  and the proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. Assume that  is an extremal set in  with Chebyshev center at  
and radius . Then we have . By Lemma 
2.5 one has for each  

Hence  is an extremal set in the Hilbert space . We now apply the main result of 
(V Nguen-Khac & K Nguen-Van, 2006) to  for every  , for any positive 
integer number  there exists  such that 

Let us choose  such that . In view of 
Lemma 2.4 

Let  be sufficiently small so that 

Putting 

we see that this is clearly a subset of  satisfying 
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Conversely assume that for every , for any positive integer number  
there exists a subset  such that:  for all 

, . Putting , from Lemma 2.4 one deduces 

For each  we choose  sufficiently small so that 

Then 

Hence by the main result of (V Nguen-Khac & K Nguen-Van, 2006)  is an extremal 
set in Hilbert space . Therefore 

Thus by Lemma 2.5 one can achieve that 

So  is -extremal set in . The proof of the Theorem 1.2 is completed.

Measures of non-compactness of extremal sets 

Proof of Theorem 1.3. First we prove that . Obviously  since 
. Assume on the contrary that . Then one can choose  

satisfying , and so subsets , ,...,  of  such that 

By Theorem 1.2 there exists a subset 
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such that 

Clearly there exists at least one set among , , . . . , , say , such that  
consisting at least two points of . Hence . This contradicts to the choice 
of , ,...,  above. So . Now we show that . Clearly . 
Let  be a number satisfying . Then there exist a finite number of balls of radius 

 say , ,...,  of  such that

By Theorem 1.2 for each positive integer number  there exists a subset  consisting 
 points of  such that the distance between arbitrary two points of  not less than 
. Denoting by 

one sees that there exists at least one set among , , . . . , , say  such that 
, where  denotes the cardinality of . Now for each number  and each positive 
integer number , we choose a positive integer number  sufficiently large so that 

 and . Then  contains  points of  satisfying the property that 
distance between any two points of which are not less than . This implies 

so  is also an extremal set in  by Theorem 1.2. Hence 

It follows that , so . Hence  and one concludes 
. The proof of Theorem 1.3 is completed.

From Theorem 1.3 one deduces that there are no relatively compact sets in a hemi-
sphere of  which are extremal. In fact we obtain the following extension of Gulevich’s 
result in (NM Gulevich, 1990) for our case. 

Corollary 4.1. Suppose that  is a relatively compact set in a hemi-sphere of  with 
. Then , where  is as above. 

Remark 4.2. (i) For any bounded subset  of  with radius  we 
can check easily that the following inequality holds 
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Indeed if  one can be choose subsets , ,...,  of  such that 

Setting 

for some  we have 

and 

Therefore 

Since  is a arbitrarily greater than  one gets . (ii) In view of Theorem 1.3 we 
see that the inequality in  holds if  is an extremal set.
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