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Abstract:

In this paper, we introduce a new inertial subgradient projection algorithm for finding a
solution of an equilibrium problem in a real Hilbert space. The proposed algorithm combines
subgradient projection methods with the self-adaptive and inertial techniques to generate
iteration sequences. The convergent theorem are established under mild assumptions. Several
fundamental experiments are shown to illustrate our algorithm.
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Introduction

Let H denote a real Hilbert space and € be a nonempty closed convex subset of H.
The paper is interested in a method for solving the following equilibrium problem (EPs):

Findx™ € C suchthatf(x",y) =0 Vy€C(,

with f:H X H = R being an equilibrium bifunction, i.e., f (x, x) = 0 for every x € H
and f (x,-) being convex and subdifferentiable on H for every fixed pointx € H. Throughout
this article, we denote Sol(EPs) the solution set of Problem. Problem (EPs) was first
presented in convex game models in 1955 (Anh et al., 2005). After the appearance of the
paper by Blum and Oettli (Blum 1994), the Problem (EPs) contains as special cases some
classes of optimization, Nash equilibria, Kakutani fixed points and variational inequality
and some others as special cases (see e.g. (Blum, 1994; Konnov, 2001)). Some approaches
have been proposed to solve Problem (EPs) in both finite and infinite dimensional spaces,
can be found, for example, in (Anh et al., 2005; Hung, 2011; Van Thang, 2022; Van Thang
& Khoa, 2022). Among these methods, the projection method is one of the most important
methods and are widely used. In general, the projection algorithm is not convergent even
for the monotone variational inequality, which is a special case of the monotone equilibrium
problem. In (Korpelevich, 1977), the extragradient algorithm for a monotone variational
inequality first introduced by Korpelevich, which is defined by:

o =
y" =Te(x™ = 4, F(x™)),
=T —AE ™)

where 4,, € (0, %), L is the Lipschitz constant of cost mapping F and Il is metric
projection from H onto C. Afterward, Korpelevich’s extragradient method has been
improved and extended to variational inequality and equilibrium problems in different
ways (Konnov, 2001; Oggioni et al., 2012). Recently, the algorithms with inertial steps
(inertial-type algorithm) have received a lot of research attention from the authors. Inspired
by the recent trend of inertial extrapolation methods for solving variational inequality and
equilibrium problems, our aim in this paper is to modify the existing algorithm in paper
(Van Thang, 2022) to develop a new algorithms for solving a pseudomonotone equilibrium
problem with a Lipschitz type condition. The algorithm is designed by combining the
subgradient projection method with the self-adaptive and inertial techniques. We establish
the convergence result of the iteration sequence generated by the proposed algorithm

under mild assumptions.



The remainder of this paper is organized as follows: We present some definitions
and preliminary results for further use in Section 2. In Section 3, we present an inertial
subgradient projection algorithm for solving Problem (EPs) and prove the convergence
theorems of the algorithm. In the last section, several fundamental experiments are
provided to illustrate the proposed algorithm.

Preliminaries

In this section, we recall some necessary concepts, lemmas that will be used in proving
the main results of the paper.
Denote p(4,B) by the Hausdorff distance between two set A and B, that is:
p(A,B):= max{d(4,B),d(B,A)}, d(A,B):= Sng,ng la—>bl.
€

acA
Definition 1 (Definition 2.1.5, (Konnov, 2001)) Let € be a nonempty convex subset of

a real Hilbert space H. A bifunction f:C X C — Ris said to be
(a) n-strongly monotone on C,if f(x,y) + f(y,x) < —nllx—y > Vx,y€C;
(b) monotone on C, if f(x,y) + f(y,x) <0 Vx,y €EC;
(c) pseudomonotone on C, if f(x,y) =2 0= f(y,x) < 0 Vx,y € C.

Let {x*} be an arbitrary sequence in H, we denote by x* — p the strong convergence
of {x*} to p and x¥ — p the weak convergence. We now recall some weak continuity
concepts of a function.

Definition 2 [Definition 2.1, (Khoa & Van Thang, 2022)] A mapping g: H = (—o0, +o0]
is called to be

(a) sequentially weakly continuous on H, if {x*} € H converges weakly to X € H, it
follows that ;]cim g(x®) = g(x);

(b) sequentially weakly lower semicontinuous at x, if liminf,_zg(x) = g(x), and

sequentially weakly lower semicontinuous on H if this holds for every x in H.

(c) sequentially weakly upper semicontinuous at x, if limsup,_zg(x) < g(x), and
sequentially weakly upper semicontinuous on H if this holds for every x in H.

Definition 3 (Definition 1.1.3, (Konnov, 2001)) Let C be a nonempty convex set in H. A
function g: C = R U {+0} is said to be convex on C if for each pair of points x,y € C and for all
A € [0,1], we have

g+ (L—A)y) = Agly+ (L=A)u(y)-



Definition 4 (see (Konnov, 2001)) Let € be a nonempty closed convex subset in H. The
metric projection from H onto C is defined by Il and

[Me(x) =argmin{llx—y || : y € C},Vx € H.

From the definition, it is easy to see that Il has the following characteristic properties.

Lemma 5 (Proposition 1.2.1, (Konnov, 2001))

(@) Foranyx € H,z = Il (x)ifand only if (z —x,y —2) <0, Vy€ecC

G) I Me(x) —Oc) ISl x—=y I, Vx,y €H;

@I Me(x)—z IP<Nx—z > =l Ne(x)—x >, Vx€HzEC.

Lemma 6 (Lemma 2.5, (Van Thang, 2022)) Foreveryx, y, z € Hand & € R, the following
inequality holds

18+ @ =y IP=Mx P+ @A - Ny IP=§@ -8 I x—yI

Lemma 7 (Lemma 2.6, (Van Thang, 2022)) For every x, ¥ € H, We have the following

assertions.
@) Il x +y 2=l x 17+ 20, )+ y 1%
®) Il x +y IP<I x 17+ 2(y,x + y).

The subdifferential of a convex function g:C = R U {+w}g:C > R U {+x} is
defined by

0g(x) ={a€H:(ay —x) < g(y) —g(x) Vy€EC}
In convex programming, we have the following result.

Lemma 8 [Theorem 27.4, (Tyrrell Rockafellar, 1970) Let C be a convex subset of a real
Hilbert space H and g: C = R U {400} be subdifferentiable. Then, x" is a solution to the following
convex problem: min{g(x):x € C}

if and only if 0 € dg(x") + N¢(x"), where No(x") is the outer normal cone of C at
x" € C,thatis, No(x") ={a EH:{(a,y —x") <0 VyE€C(}.

Lemma 9 [Lemma 2.8, (Van Thang, 2022)] Let {an }, {bn }, {Cn } be sequences of nonnegative
real numbers satisfying two following conditions:
(@) py1 < Ay + cu(@n — An1) + by, Vk 21,332 by <

(b) there exists a real number ¢ suchthat0 < ¢, < c<1lforallk>1



Then,
(a) Z?zo=1 [an — an—1]+ < oo, Where[an =N an—1]+: = max{aﬂ —An-1, 0}
(b) there exists a” € [0, +o0) such that lima, = a”.

n—oo

Lemma 10 [Lemma 2.39, (Bauschke & Combettes, 2011)] Let C be a nonempty subset in
real Hilbert space H and {x™} € H satisfy the following conditions:

(a) forallx € C, lil}_l | x™ — x || exists;
n—+ca
(b) every sequentially weak cluster point of {x"}is in C.

Then, the sequence {x"} converges weakly to a point in C.

Inertial subgradient projection algorithm

In this section, we introduce a new inertial algorithm for finding a solution of the
(EPs) and show its weak convergence. It is described as follows.

In order to find a solution of (EPs), we assume that the bifunction f:H X H —= R

satisfies the following conditions:

(@) f(x,y) is pseudomonotone on H X H and f(+, ) is sequentially weakly upper

semicontinuous on H;
(b) there exists a real positive number L such that
p(02f () (), O2f )W) =Ll x=yll, Vx€Hy€C,
where 9, f (x,-)(x) is subdifferential of f (x,*) at x, i.e.,
gfllixi={ne K daz<—y) =flvz) YeEL;
(a) Sol(EPs) is nonempty.
(b) f(x,*) is convex and subdifferentiable on H;
Algorithm 1 Choose starting points
L oat edin’, st edl &) L, a {01} ¥ E(02)

$o>0, L">L, a€(01), y €(02) and the positive sequences {0y}, {Mn}, {rn}
satisfying



yn

that

+00 +co
< B Z 0. < Foo, 1, € (0,1), Z it < oo
n=0 n=0

4 Bl ligi v, =8
n—+oo

Setn = 1 and go to Step 1.

Step 1. Choose a;, such that 0 < o, < @,

g #n = n n—1
. _{mm{" T "2,():}, i xtEatT,

L
«a otherwise.

Step 2. Compute
W= w1

Step 3. Choose Uyn € ,f(w", w"). Find y" € C such that

— HC(wn o fnUw”)*

If y" = w" then Stop. Otherwise, go to the next step.

Step 4. Take Ugn € B(Uyn, L” | W™ — y™ ) N 0,f(y", y"), where
B(Uyn, L' W=y |):= {XEH: x—Uyn IS L" [ w" —y" lI}. Set

EM = W — Y™ — &y (Upn — Uyn).
Compute

x™h =T (W™ = 1,8 Uyn)

and

¥ | =" |

min
$nt1 = {ll Uyn — Upn |l
Fa k0, otherwise,

where 1, is defined by

<Wn _ yn’ En)
- ={

fEthn) B . i NIE*IE0
0 otherwise.

Step 5. Let n = n + 1 and return to Step 1.

I Gn}, if Uyn —Uyn #0,

(1

)

3)

(4)

)

(6)

(7)

(8)

Remark 2 (i) Ify™ = w", it follows from (3.4) that w™ = I (W™ — &,U,,n), which implies

0 < (U, x—=w")< f(w".x), wxEC



So, w" is a solution of the (EPs).
(ii) In (Van Thang, 2022), we have developed a

Lemma 3 If the assumptions (M;) — (My) hold, x" € Sol(EPs) and the sequences
{x"}, {w"}, {y"} are generated by Algorithm 3.1. Then

i [ ™= =il ™<= 2" T l=0B:
& € [ming, &}, & + 0], Vk = 0 and lim,, &, = §, where X312 6, = ©;

(§n+1 - Vszn)z

[ —2" P w™—2" P- O+ )2 -7 —K) I wh
" " Y

Proof. We have from (2) thata,, || x™ — x™ 1 12< u,,, which together with Condition

(1) implies that

- yn ”2

D ot | -
This together with (3) implies limy, 5, | W™ — x™ ||= lim, e, | x™ — x™ 1 ||= 0.
Now, we prove (b). Let Uy,n — Uyn # 0. Then, we deduce from the assumption (M)

that

VIIwn—y"II>VIIw'”—y"‘II v

= = 9
| Uyn — Upn | — L | W —=y™ || L ©)

By (7) and using mathematical induction proof method, it is easy to see that {&,}
belongs to [min{%, &), &0+ 0], Vk = 0Set (§41 —&n)" = max{0,&,,; — &,} and

n+1 —$n) = max{0, — (&1 — &)}

From (7), we get

f a—" & f Ty < Foo. (10)

Assume that 1% (&40 — &p)~ = +0.

Using the following quality
Snt1 —én = Gne1 — &) — i —$0)™



we obtain
i —f0= ) En—8) =) Gen=8)' =) Gua=&) (D
k=0 k=0 k=0

Taking the limit as n = oo on both sides of the above inequality, using (10), one has
&, = —oo, which is a contradiction. Therefore, Yn2% (&n41 — &n)~ < +c0. Which together
with (10) implies that lim,, &, = & € [min{f, &), & + 0]

Next, we prove (c). By using x* € Sol(EPs), f(y",y™) =0, Un € d,f(y",y™) and
the pseudomonotone assumption of f, one has

Tndn(Uyn,y" = ') 2 T&ulf " ™) = F" 2 )] 2 0. (12)
From (6) and Lemma 5 (c), it follows that
I x™ —x* 1P=)l He(W™ — 1,8, Uyn) — x* |
Sllw™ = 2,80 n =™ [P | W< g pn =™ P
=flw" = 2" P 205w —x " U n) + 26,5, (0™ —x™ Ua -] ™ =" P

=flw" = % P 2™ =w™ P25,8 " = U ay 205 O —x™ Uy s
Combining this and (12), we have
L™ — X <) w™ = x" 12 = x™ = w124 27,8 (y" — an,Uyn ). (13)
By Step 3, one has

0 < 2t0wt —y" — &£ 0.0,y —x) Y¥EL,
which implies that
0 <27, (W' —y" =& Uyn, y* — x™t1), (14)

It follows from (13) and (14) that
I x™ = x* IP<Iw™ = x" |1” =

” x‘-“H—l it wn ”2+ 2Tn§n<yn s xn-l—l’ Uy?l)
T2 W =Y — Gl — xn-l-l)

=l w" = x* |2 =l w" = x™ — 7, E" I?+ (7, | E"
”)2 il z,rn(wn r. xn+1’5n) & 5 ZTR(QVR - xn+1’ En

=l w”—x* I7 =l w" —x™ — 0, Z" 124+ (z, | " D% + 27, (y" —w™,E™) <
I w™ —x" 117+ (. | 2" D? + 27,(y™ — w™, E™).
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We deduce from the above inequality and (8) that

” x.?‘H-l i x.* "2

(wn _ yn’ En>)2

SEw" = " 1P () (e

5 (Wn _yn’En) "
IE" P+ 2(r + K~ O — W ED)
: (w" =y, E")?
< wh—x*|1°— r+u)2—vy—1n) M (15)
On the other hand, using (5) and (7), one has
=y EN = T =y W =y (U= Uyn))
=l wh = y" 2= & w™ = y", Uyn — Uyn)
> wh =y 2= & Il wh =y Il Uyn — Uy | (16)
v
> (1 =20y =y I
nti
From the definition of Z" and Step 3, we obtain
IE® 1=l w™ —y" =& (Uyn —Upn) ISKTW™ —y" | +&, 1 Uyn — Uy |l
v
< +28y pwn -y,
§n+1
which together with (16) implies that
véy, $ni1 — Vén
(wh—y"EM) 2 (1- Iw"=y™ 1?2 ¢ IE™ 1% 17
( n+1) e (§n+1 T vEn)? (17
-V
™ =X IPIw™ =" IP= (¥ + ) (2= ¥ S

~ Kn)ne (&ns1 +vER)?

(Ener —vER)? | wh
(Ensr +vEn)?

Lemma 4 Assume that the assumptions (M) — (M) holds and x™ € Sol(EPs). Then, we

SHw™ —x" IP= (r + 1) 2 — 7 — k) —a Il

have the following assertions

(a) the lim,, o, || x™ — x™ ||? exists
(b) the sequences {x"} and {w"} are bounded;

(¢) Jim [l ™ = 2" % =l x™ ™ = x" I”]4 = 0, where
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[a]+:= max{a, 0} for each a € R.

Proof. Let x™ € Sol(EPs). By Lemma 6 and (3), one has

[0 P=ll 2™ ™ ™ =T I

=l 1+ )" —x") + (—a)(x" = x7) |I° (18)

=(Q+a)lx"=x" 1P+ (—ap) I x" P =x" P+ a,(1+ay) | x™ —x"1 %

We have from 3 (b) that
L™ o™ PSllw™ o I Vi,

which together with (18) implies that, for all k

I a® P [t | =0 [PF Cag) lla™ =™ Pl Hiay) | 2™ (19)

X

n—1 "2

=l x"—x" P+ ap(lx"=x" 17 = x" P =x" 1) +a,(1+a) || x™—x"1 2.

get

Letting a, =l x™ —x" I, ¢, = ap(1+ @) Il x™ — x™ 1 ||?, then by Lemma 3 (a), we

Y a1+ a) [ x™—x"1?< +oo.

By Lemma 9, we can conclude that lim,,, | x™ — x* 12 exists and
P llx™ = P=lla™ =" 7]y e,

Consequently, the sequence {x"} is bounded and

lim[l| 2™ —x* ||* =] a™ =" ||] = 0. (20)

n—oo

Thank to Lemma 3 (a) and (3), one has

lim | w" —x™ I?= lima2 || x™" — x™" ! ’< limaa, || x™" —x™""1 2= 0. 21)
n—o0 n—oco

n—co

So, {w"} is bounded since {x"} is bounded.

Theorem 5 Let bifunction f: H X H — R satisfy the assumptions (My) - (My). Then, the

sequence {x"} generated by Algorithm 1 converges weakly to a point x* € Sol(EPs).

Proof. Let x* € Sol(EPs). By Lemma 3 (b), a,, < a and (18), it follows that

fx™ —x* IP<(QL+a) Il x"—x" IP—a, 1 x™ 1 —x* I?+ a,(1 + a,)

I =" = (1 + k) (2 Y — K g :::;

2
"

| w"—y
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* 2 * 2 -1 * n2 —1 12
Sllar™=a" " Haflle™ =2 |I” =l x™ =" ")+l Ha) | x™ <2}

(s =MLY | wn
(G T8,

—y+r)(2—y—Ky) — % PP

- —~ -1 2
Shx™—x* P+ ap[ll x™ —x* 17 =l x™ P —x" IP]y + (1 + @) || x™ —x™71 |

(§n+1 . v%n)z n - ”2

—(y+Kr)2—y—kK Ilw"—y Vk = 1.
( n)( ) ($nis vEL)
Consequently
T an)z
y+r,)2—-y—k I w™ —y™ |I?
( n)( n) ($naa t+ an)z
L™ 1P =l aox Piimllla™ =@ P ™" - 1Pl

(22)
+a,(1+a) | x"—x""1|?, Vk=1.

Letting k — oo in the above inequality and using Condition (1) Lemma 4, (22) and
Lemma 3 (a), one has

lim | w" —y™ = 0.

T—co

Let A(x™) denote the set of weak cluster points of the sequence {x"}. We now show
that A(x™) € Sol(EPs).Indeed, let X be any pointin A(x™), then there exists a subsequence
{x"} of {x"} converging weakly to X. By Lemma 3 (a), the sequence {w "} converges weakly
to X. This together lim || w™ — y™ ||= 0 implies that the sequence {y"} also converges

Tn—00

weakly to X. From Uy € B(Uyn,L" | wh = y™ D), it follows that
| Uyn —Upn IS LI W" —y" |,
and so lim,, o || Uyn — Uyn I= 0. By (4), one has
s S e oy g 2, W € C.
Which together with Uyn; € 0, f (y™,y™) implies that
2(w™ — y™,x — y™) < & (Uyni, x — y™)
< &, ((Uyni, x — y™) + (Uyyni — Uyny, x — y™)
< £ FO™5x) + Epflyn: — U — 3.
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From || w™ — y™ ||= 0 as k = o and {w"i} is bounded, we have that {y"} also is
bounded. For each fixed point x € C take the limit as i = oo on the last inequality, using
lim; e, | W' —y™ ||= 0, lim; o | Uyni — Uyn; lI= 0, Condition (1) and the sequentially
weakly upper semicontinuity of f (-, y), we get

JlEx] =0 e L.

So, X € Sol(EPs). By Lemma 10, the sequence {x"} generated by Algorithm 1
converges weakly to a point x” € Sol(EPs).The theorem is proven.

Computational experiments

In this section, we introduce some numerical examples to illustrate proposed
algorithms. All programming is coded in Matlab R2016a and the program was run on a
PC Intel(R) Core(TM) i5-2430M CPU @ 2.40 GHz 4GB Ram. We used the Optimization
Toolbox (fmincon) to solve strongly convex subproblems that are generated by proposed
algorithms.

Example1.LetH = R°and C = {x € R®: (a,x) = q}(0 # a € R®, q € R). Consider
Problem (EPs) with the bifunction f: R® X R® = R is defined by

1 2 1 2 1 2 1 2
2. y) = maX{§ Iy I°+ 0.5 Iy 7+ (a,y)} —maX{E x|l +q,§ Il x I+ (a, x)}.

It is well-known that h(x)= max{% Il x I+ q,% I x I°+ (a,x)} is convex,
subdifferentiable on R* and

{x+a} illax)>0
oh(x) =< {x} if(a,x) > 0 (23)
ila.x) =g,

where [x,x + a] = {tx + (1 — t)(x + a): t € [0,1]}. It follows that
p(02f (%) (), 02 f )W) =l x =y Il Vx,y € C.
It is easy to see that f (x, y) satisfies assumptions (M; )-(My).

Test 1. Let n = 5. We perform some experiments to show the numerical behaviors of
Algorithm 3.1 for solving the Example 1. The initial points are x* = x° = (=34,0,0,0,0)"
and the data is chosen as follows: a = (1,1,2,3, —l)T, q = —34,
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1 Ty 1
-y = =
R N A e TR e
Figure 1 shows convergent results of x™ (i) — x" (i), i = 1,2,--,5, where x"(i) is
the i-th coordinate of x™.

2 - ' ! ' '

1+ —F—x"(1)}x"1(1) | |
e, - x"2)}x"(2)

odeece FrEnES R R -+ x"(3)x"1(3) |

- _ SRR | n=1

e x"(d)x™"(4)

Ak > x"(5)x™"(5) | |

¥
2+ F ]

~
e
I

'8 1 1 | | |
0 0.5 1 1.5 2 2.5 3

Time (sec)

Figure 1. Convergence of Algorithm 3.1 with the tolerance 103

Example 2. Let H = R®, b € R™, A be a m X s matrix. Consider Problem (EPs) with
the feasible C is a polyhedral convex set given by

C={xeR"Ax < b},
and the bifunction f: R® X R® — R is defined as in (Van Thang, 2022):
foy) =(Px+Qy+q.y—x)
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where ¢ € R", B, P and Q are n X n matrices such that Q is symmetric positive
semidefinite and P — @ is negative definite. As shown in (Konnov, 2001), the f(x,y)
satisfies the assumptions (M;), (M) and (M,). We have

fy)+fx)=—((P-Q@ —x),y—x)<0, Vx #y,

which implies that f(x,y) is strongly monotone on C. Since f(-,y) is upper
semicontinuous, f(x,") is convex and lower semicontinuous and f(x,y) is strongly
monotone, we have (EPs) has a unique solution ((Konnov, 2001), Proposition 2.1.16).

Test 2. Let s=5m =10. In this testt we apply Algorithm 1 to solve
Example 2 with different given initial points and parameters 0,, k,. We will use
Sa=05 = L=l =l P—0 4 Lipe= —— for all k. The matrices

(n+1)L5
P, Q, q are chosen as follows:

1.6 1 0 0 0 31 2 0 0 0 1
1 1.6 0 0 0 2 3.6 0 0 0 2

0 =|0 0 TS5 =10 0 35 2 0l.g=]|1]
0 0 1 15 0 0 0 2 33 0 2
0 0 0 0 2 0 0 0 0 3 1
=1 1 2 0 1 1 1 3 2 2
—7, =2 =1 g =4, ==F =3 ' 4 2

A=[ -1 =1 15 1 —1, =2 =ik —3 =& ZY¥
0 2 1 —Z 1 1 2 2 —% 1
=1 =5 2 Ly =2 —1 & 2 5 0

bT = (0,1,0,1,—-1,2,2, -1, -1, —2).

The stopping criteria is Err =|| x™ — x™ ! ||< € with € = 107 and the approximate
solution computed by Algorithm 3.1 is

x* = (—1.9250, 0.3375, 0.5716, 0.4459, 1.2532)".

The computation results are shown in Table 1. From this table, we can make the

following comments about the algorithm.

(a) The speed of our algorithm is less affected by the parameters 8,, and k. This

shows that the parameter ¢, and 7,, is mostly updated based on previous iteration points.

(b) The program that encodes the proposed algorithm runs quickly if the initial point
x? is close to a solution of the problem. Conversely, if the initial point x° is far from a

solution then the program takes much more time.
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Table 1. The comparative results

for different starting points and parameters

Parameters Algorithm 1
Init. point x* = x° ¥ 0, Iterations. | CPU times
1 i
(1,3,1,1,-2)" 64 2.3967
n+1 (ol o |
1 i
(1,3,1,1,-2)" 58 2.1043
2n +1 S o |
1 i
(1,3,1,1,-2)" 56 2.1237
3n+1 2 +1
1 i
(1,3,1,1,-2)7 63 2.3043
in +1 2 +1
1 i
1,311, =2)" 67 2.5329
( ) 5n+1 2 +1
1 i
(1,3,1,1,-2)7 60 1.9587
n+1 n*+1
1 i
(1,3,1,1,-2)7 72 2.3572
n+1 n® +1
1 i
(1,3,1,1,-2)" 67 2.4863
n+1 n® +1
1 1
1:.34,1, =" — 59 1.9983
( ) n+1 L o |
1 i
(2.4,0.6,1,0.25,1.3)" 89 2.9828
n+1 21
1 i
(4,6,53,7)" 108 3.2384
n+1 i+
1 i
(7,8,6,6,13)" 143 3.4251
n+1 i+
1 i
(11131221.24)" 187 3.9448
n+1 S o |
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Conclusions

We propose a new inertial subgradient projection algorithm for finding a solution
of an equilibrium problem in a real Hilbert space. Our algorithm combines subgradient
projection method and inertial techniques. Moreover, at each iteration, the self-adaptive
is used. The convergent theorem are established under standard assumptions imposed
on the equilibrium function. Several fundamental experiments are shown to illustrate our
algorithm.
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