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Determining Modes of the 2D
g-Navier-Stokes Equations

Nguyen Dinh Thi#", Tran Quang Thinh®

Abstract:

The “determining modes” introduced by Prodi and Foias in 1967 say that if two solutions
agree asymptotically in their P projection, then they are asymptotically in their entirety (see
(Foias, 1967)). We study the initial boundary value problem for 2D g-Navier-Stokes (g-NVS)
equations in bounded domains with homogeneous Dirichlet boundary conditions. We find an
improved upper bound on the number of deterministic modes. Moreover, we slightly improve
the estimate of the number of deterministic modes and achieve the upper limit of the Grashof
Gr numerical order. These estimates are consistent with heuristic estimates based on physical
arguments, extends previous results by O.P. Manley and Y.M. Treve (see (Foias, 1983)). The
Gronwall lemma and Poincaré type inequality will play a central role in our computational
technique as well as of the paper. Studying the properties of solutions is important to determine
the behavior of solutions over a long period of time. The obtained result particularly extends
previous results for 2D NVS equations.
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Introduction

Let 2 be a bounded domain in R? with smooth boundary I'. We consider the

following two-dimensional (2D) non-autonomous g -Navier-Stokes equations:

d
—u—v/_lu+ (u-VMu+Vp=f(xt)n (0,T) XQ,

ot
V-(gu)=0 n(0,T) X,
u=0 on (0,T) xT, (1)

u(x,0) = up(x), x €1,

where u = u(x,t) = (uy,uy) is the unknown velocity vector, p = p(x,t) is the
unknown pressure, v > 0 is the kinematic viscosity coefficient, u, is the initial velocity.

The g-NVS equations are a variant model of the standard NVS equations.

Furthermore, when g = const we have the usual NVS equations. The 2D g-NVS equations
arise in a natural way when we study the standard 3D NVS equations in thin domains. We
refer the reader to (Olson, 2008) for the 2D g-NVS equations from the 3D NVS equation
and the relationship between them. As mentioned in (Olson, 2003), the good properties of
the 2D g-NVS equations may lead to the beginning of the study of NVS equations on the

thin 3D domain £, = 2 X (0, g).

Recently, the existence of both weak and strong solutions to the 2D g-NVS equation
has been investigated in (Foias, 1983, 1987). The existence of periodic solutions to the g-
NVS equations has been investigated recently in (Foias, 1967). Furthermore, the long-term
behavior of solutions in terms of the existence of universal, homogeneous and pullback
attractors has been studied extensively in both autonomous and non-autonomous cases, see
e.g. (Catania, 2012; Foias, 1984; Jones, 1993; Olson, 2003, 2008) and references therein.
However, to the best of our knowledge, little is known about other properties of solutions to
the 2D g-NVS equation. This is a driving force of the current paper.

We will study the number of ways to define 2D-Navier-Stokes in domains that are not
necessarily bounded but satisfy the Poincaré inequality. In particular, the dependence of the
determination methods of numbers on Grashof's numbers. To do this, we assume that the

domain  and functions f, g satisfy the following hypotheses:

The domain 2 is an arbitrary (not necessarily bounded) domain of R? satisfying the
Poincaré inequality:

I¢%dm§%JW¢th,fMﬁH¢eQﬂQx @)
Q Q

where 4, > 0 is the first eigenvalue of the g-Stokes operator in ;
(F) f € (0, T; Hy),

(G) g€ W (€) such that
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0<my<g(x) <M, forall x = (xg,x,) in £ and [Vg|% < m2A;. 3)

The article structure is as follows. In Preliminaries, for convenience of the reader, we
recall the preliminaries of the 2D g-NVS equations. As the main result of the paper, we
show the number of modes defined in Determining modes.

Preliminaries

LetL2(Q, g) = (L12(Q, g))? and H3(Q, g) = (HE(Q,9))? be endowed, respectively, with
the inner products

(wv), = fu. v. gdx
0
where u,v € L2(02,9)

((u,v))g :j Zz:Vuj.ij.gdx

n
where u, v € H} (£, 9),
with norms |ul® = (u,u),, ||ul|* = ((w,u)),. From assumption (G), the norms |.|
and | |.| | are equivalent to the usual ones in L.?(£2, g) and in H} (2, g)..
LetV = {u € (C (2, 9))%:V- (gu) = 0}

We denote H, as the closure of V in L2(2, g) and V, as the closure of V in H} (2, 9).
Furthermore, V, © H, = Hy < V; where the injections are continuous and dense. We use
||.||. for the norm in ;" and (.,.) for duality pairing between V; andVj,’.

We define the trilinear b as follows

= aU]
by(w,v,w) = Z Luia—Xiwjgdx,

ij=1

whenever the integrals make sense.

It is easy to see that if u, v,w € V, then by (w, v,w) = —b,(u, w, ).

Specially, b, (u,v,v) = 0, Vu,v € V..

Set Ay:V, = V' by (Au,v) = ((w,v)) g, By:Vy X V; = V'by (By(u, v),w) = by (u, v, w)
and put Bju = B, (u, u).

We denote D(4y) ={u€V;:Aju€ Hj} then D(A,) =H*(,g)NV, and

Agu = —F,Au,Vu € D(A,), where F is the ortho-projector from L2(2, g) onto H,.
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Using the Ladyzhenskaya inequality and the Hélder inequality (when n = 2)
Julps < clulg[lully ", Vu € Hy(2, 9).

Lemma 1 (Ozliik, 2016) When n = 2, then

1/2”u”1/2 1/2 1/2

Cllulg g ||U||9|W|g ”W”g ] VU,U,WE‘{Q,

g g g g

|bg(u, v,w)| <

1/2 1/2
csluly?|Aguly/?|lvll4lwl, VYu € D(A),v €V,w € H,,
1/2 1/2
calulgllvllglwly*|1a,wly/?,  Vu € Hy,v € V,,w € D(A,),

an |By(w, v)| + [By(v,u)| = 65||u||g||v||;_6|Agv|z, Vu € V;v € D(4y),

1/2 1/2 1/2 1/2
calulg Il *11vlly 1 4gv] 5 *Iwlg  Vu €V,,v € D(A),w € Hy,

(4)

)

where 6 € (0,1) ; appropriate constant s c;withi = 1,5 . Moreover, For every

u,v € D(4,), then

|Agulgllvllg,

B (u,v Sc{
1By ()1 = G614y 114, w1,

where u, v € D(4,).

Lemma 2. (Foias, 1987) Let u € 1.2(0,T;V,), then the function Cyu defined by

((Cgu(t), v)g = ((Z—g V) u, v) = ‘b‘g (%,u, v),Vv € l(q,

g

belongs to .2(0,T; H,) and .2 (0, T; V).

Moreover,
C.u(t <|V‘g|°° t forvVte (0, T
|Cqu(®)| = - Ju(®)l] g, for 0,7),
and
V9o
[|Cqu(O]. = ——75- [lu(@®)]|, for Vit € (0,T). (7)
/
moA,
Since

Lw.gru=—su- v
——WV.gVu = —-A4u— (—.V)y,
g g

we have

(6)
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Vg Vg
(—4u,v), = ((w,v), + ((? Nu,v)y = (Agu,v)4 + ((? Mu,v)y,YVu,v € V.

Lemma 3. (Jones, 1993)
Let w be a locally integrable real valued function on (0, oo) satisfying the following
conditions:
t+T

1
liminf? w(f)dt =y >0,

t—oo t

1 t+T
limsupff w (Ddt=T < o,
t

t—oo

where w~ = max{— w,0}and 0 < T < oo, Further, let Y be a real valued locally
integrable function defined on (0, o) such that

t+T

1
liminf — Y* (r)dTt =0,
t—oo T t

where " = max{,0}. Suppose that y is an absolutely continuous non-negative
function on (0, ) such that

d
_ <
my+wy—w

then y(t) - 0 when t — oo.

Using the above notations, we can rewrite the system (1) as abstract evolutionary
equations

dt

d
[_u+vAgu+ngu+Bg(u,u) =f, €)
u = u.o.

Let

1/2
F = limsup (j |f(t,x)|2dx) :
0

t—oo

F
A,v2°

We define the number Gr (generalized Grashof) Gr =

The Gr number will act similarly to the Reynolds number and will be our branching
parameter. In the next section, all our estimates will be based on the generalized Grahof

number. Note that if f is time independent then Gr is Grashof's number Gr = -—.
1
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Determining modes

The first m eigenfunctions of the g — Stokes operator A,. We define B,, orthogonal
projections onto a linear space extending by {w,,w,,...,w,,}and Q,, =1 — P,,.

Let u and v be weak solutions of the g-NVS equations, respectively.

dt

d
{_u +vAgu +vCyu + By(u,u) = f;,
u = uO. (9)

dv
{E +vAgv + vCyv + By (v,v) = f, (10)

UV = Vy.
where fi, f, € L*(0,0; Hy).
A set of modes {w;}}.; is called that determining if we have
Eirglu(t) - U(t)lg =0,
whenever

limlfy(8) ~ fo(O)ly =0,

and

gimleu(t) — B,v(t)|y = 0.

Theorem 1. Assume that m satisfies

31/2
A’;“ > ——c3Gr,
1 Yo
where

vo=(1- Vglc
0 moli/z .

Then the number of determining modes is not greater than m. That is, if we have
liml|Pu(t) — Buv(@®)lly =0, and limlf,(8) — fo(®)]y =0, then
girgllu(t) —v(H)ll4 = 0. Proof:

Letw=u—v, p=P,w(t) and q = Q,,w(t). Then, we assume that |p| - 0 when
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t — oo, Subtracting equation (10) from (9), we get
w, +vAgw +vCw + By(w,u) + By(u,w) — By(w,w) = f; — f,. (11)

Multiplying equation (11) by 4,q, we obtain

d 2
p lqll3 + 2v|qu|g +2v(Cyw, Agq) 4 + 2(By(w,u) + By(u,w) — By (w,w), 4,q)
= z(fl _fZJAQQ)gi (12)

Using Lemma 2 and (6), (8), we have
d 2
allql@ + 2V|qu|g
Zvlvgloo 2
— 172 |Aga|, +2(fi — o, Ag@) g + 2|(By(w, w), Agu)|
moA; g

+2|(B,(w,w) + By(w,u) — B (w,w),A,p)|,

or

d 2
2
Zelallg +2vyol4gal

< 2(fi — f2,Agq) g + 2| (By(w,w), Agu)|
+2|(B,(w,w) + By(w,u) — B (w,w),A,p)|,

Vgl
YVo=|1——F%]>0,
° ( moll’lz

1

Where

We use (4) and |Az/2p|9 < /ﬁ',{zlplg to obtain

|(Bg (w,w) + By(w,u) — By(w,w), Agp)|
= |(Bg(u' Agp)' W) + (Bg(W, Agp)'u) - (Bg (W' Agp)' W)l
< ey luly 2 Il 1wl 2wl ? + e lwlglwll )AL pl g2 = Mylpl,y

Since | |u]| |g, | |v] | remain bound when t — co andM; is bounded as t — oo.

We use the equation B,(w,w) = B,(q, q) + By(p,w) + B,(q,p) and (4) to obtain
|(Bg(w, w), Agw)| < [(By(q, ), Agu)| + M2|p|g|Agu|q + C3|p|g|qu|q|Agu|q .

where M, may be chosen to be cs/s > ([|ull 4 + |[v]],).

Using (4), we also have
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1/2 | 9 |
||q||g|Agu|g 17 ——21lqll, |4, u|

m+1

2

(By(a, @), Agw) < cslaly”|Aqal

Applying Cauchy's inequality, we conclude
3c3|Agu|;

d
— 2 2 g
G915 + a3 0yotne —— =29 <,

0

where
3 3
B - ZMllplg + ZM?.lAgulglpIg +— VYo |A ul Iplg VYo If fZIg

It follows the a priori estimate of the time average of |Agu|q

1 t+T F2 F2
. 2
llrtris;lp?‘[ |Agu|gdr$m+v—2,

for every T > 0 (here we take T = (vA;)™1).
Applying Lemma 3 with

y =lqll,

3c3|A u|
® =VYoAmi1 — V}’o/Lm .
+

= 2M;|p|, + 2M,|A |||+i 2| A ul’| I2+il — fal5
1/)_ 1pg+ 2 gugpg V)’oca gugpg V}’ofl fZQ

and noting that 2m2 Gr, then the proof is complete.

Ay Yo

Conclusion

In conclusion, we have presented an improved upper bound on the number of modes
defined for the 2D g-NVS equations. Moreover, this is an important result in the study on
the long time behavior of the solution when the time to infinity. The calculation techniques
showed here can applied to other classes of equation systems such as Boussinesq and MHD.
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