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Capillary Waves at Cylindrical Interface
of Two Immiscible Bose-Einstein Condensates

Hoang Van Quyet®

Abstract:

By means of the hydrodynamic approach within the Gross-Pitaevskii (GP) theory, dispersion
relation of Nambu-Goldstone modes at the interface of the system was found out. While com-
ponent 1 of the system motion parallel to the interface the dispersion relations is of phonon
and furthermore, the system becomes unstable for .
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Introduction

The theoretical studies of two immiscible BECs (E. Timmermans, 1998; P. Ao and
S.T. Chui, 1998)) and the experimental realizations of such systems (C.]. Myatt, 1997; D.M.
Stamper-Kurn, 1998; D.S. Hall, 1998; E.A. Cornell, 1998; Stenger, 1998) have allowed us to
explore many interesting physical properties of BECs, in which the superfluid dynamics
of interface between two segregated BECs has attracted special attention. Following this
trend, in recent years one has focused on considerations of hydrodynamic instabilities at
the interface of two BECs, such as the Kelvin-Helmholtz instability, the Rayleigh Taylor
Instability and the Richtmyer-Meshkov instability (H. Takeuchi, 2010; K. Sasaki, 2011;
A. Bezett, 2010). Combining the hydrodynamic approach and the Bogoliubov de Gennes
method these considerations confirmed that the foregoing instabilities of fluid in classic
hydro dynamics are also to take place for two segregated BECs. The present pap er deals
with two-immiscible BECs with cylindrical configuration, in which the first component
forms a cylinder along the z axis, which is surrounded by the second component. Such the
system generates a cylindrical interface. It is known in fluid mechanics that a fluid cylinder
will be unstable against break up into droplets if its length exceeds its circumference. This
is the well-known capillary instability. As was indicated in Ref. (K. Sasaki, 2011) this is also
the case for two segregated BECs. Our main aim is to investigate the capillary waves at
this interface focusing on the exhibition of NG modes. To begin with, let us start from the
Lagrangian of Gross-Pitaevskii theory

f.=fd'?(Pl + P _§12|W1|2|W2|2): (D
where
ow. h? 2 Gi F
P =in¥j—2——|vy|" —-=L|w],
AL | A ij| )‘ 2 | J| )

v,(j=1, 2) are wave functions, i, atomic masses and the interaction coupling constants

are defined as
Jjx = 2}Ih2ajk(m;1 + m,;l)gjk = 2nh2ajk(mj_l + m;l)

4

with a, being the s-wave scattering length between the atoms in components j and k.
In the following we assume that

912 > G119229%2 > 911922,
implying that the two components are immiscible.

From Lagrangian (1) the Gross-Pitaevskii equation is deduced
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It is clear that Lagrangian (1) and GP equation (3) are invariant under the
transformations of the symmetry group U(1)xU(1). The presence of a cylindrical interface
will spontaneously break down the translations in the (x, y)-plane. Thus, the system
possesses four broken symmetries. In Lorentz invariant systems the Goldstone states that
the number of NG modes coincides with the number of broken continuous symmetries.

However, this statement fails for our system being not Lorentz invariant.

The paper is organized as follows. Section 2 is devoted to detailed investigation of
physical phenomena occurring at a cylindrical interface of two immiscible BECs at rest and
in motion. The conclusion and discussion are presented in Section 3.

Laplace Equation and NG modes

For cylindrical configuration we assume the first (second) component is inside
(outside) the cylinder with radius R and the interface between them is located at ¥ = R(z, t),
neglecting thickness. Then the Lagrangian (1) is approximated by

R oo
E=2nfdz (f rdrP; + [ rdrPg) — as,
0 R

where a is the interface tension (B. Van Schaeybroeck, 2008) and S the area of interface.
From the foregoing equation the Laplace equation (L.D. Landau, 1987) is derived

1 1
B — BB E— a(—+—) ,
: : R, R, 4)

in which R, and R, are the principal radii of the interface curvature. To explore the
Laplace equation (4) let us at first determine the wave functions y/(r, z, ) in the linear
approximation employed by (K. Sasaki, 2011). We write them as

Y(rzt)= n(rzt). el®irzt),
(5)

In which
ni(r.zt) =ny + 6n;(r,zt),
.-n-
Yi(r,zt) = _JiilYo + 59;. (6)

h
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Substituting (5) and (6) into the Gross-Pitaevskii equation (3) and keeping only the
first order of dp, dn, we are led to the equations

F’Féf =1 (7a)
ha (S(D}) + giiﬁnj — 0;

(7b)
with the velocity
bt B
v, =— %
7 my j )

Eq.(7a) means that in the approximation the fluid turns out to be incompressible.

Next, we adopt the ansatz
6¢;(r,z.t) = R;(r)x;(0), 0 = kz — wt. 9)

Taking into account (7b) and (9) Eq. (7a) leads to

d2
(G4 )u=o

(10a)
ci B ST
dz= " v i i (10b)
Assuming that k, > 0, Eq.(10a) possesses the general solutions
xj(o) = Ajcosa + B;sina, (11)

and the solutions to Eq. (10b) are expressed through the modified Bessel functions of
the first and second kind

&.(r) = const. I;(kr),
R.(r) = const. K;(kr). (12)

Combining (11) and (12) the general solutions of the system (10) read
6P, = I,(kr)[A,coso + B; sina],

6P, = K,(kr)[A,coso + B, sina],

which for simplicity are chosen as

dP, = A, I,(kr)coso,
6P, = A, I (kr)coso. (13)

Inserting (12) into (7b) yields

g116n, = —A hwly(kr)sinag,
G226, = —2hwK, (kr)sinae. (14)
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Taking into account (6), (13) and (14) the expression (5) takes the form

g11

A hﬂ.) % n 4
I‘Dl s ‘]nw o I.)(kr)sincr .6‘1(_ 7 mt+A119{_kr)cosa)l

11

G2z

A>hw . G227 p
tpz s ‘]nzo 2 K.)(kr)sincr .el(—%t+ﬂgfﬂﬁkr)cosa).

So far, the analytical expressions for wave functions were established in the linear
approximation. They will be used to determine the shape of interface and phonon dispersion
relation. To do this, we assume the boundary condition

dR h (864-”1) _ (86@52)
?"=Rg R ?"=R3J

a 1y A dF L L a9 (15)
dR (o hK hK
w (9) = —A,—I,(kRy)cosa = —A, —K,(kR,)cosa,
do m, m;
whose solution is straightforwardly derived
R(0) = esina, (16)
with |g] « 1]e| <« 1 and o describing the phonon dispersion relation
AL (kR A,K, (kR
Gy K 1 l( 0) _ hK 2 l( O)J
em, em, (17)

which exhibits the quantum character of phonon. For convenience we take ¢ > 0 then
the condensates are super fluids for A, <0, A, > 0 and the speed of sound reads

Ad(kRy)  AsKi(kRy)

emy ems,

c=-—

Imposing

on; = on;(r)sino,

and taking into account (14), (17) we arrive at

cw?m,

91.07,(r) = m Iy (kr).

cw?m, K, ()
kK, (kRo) ° (18)

- ak(k?R% — 1)

- I.(kR K. (kR y
R3 (mimsg i%mﬁ g K?_EkRS)

G22075(r) =

w

(19)
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Ultimately, substitution of (6), (13), (14) and (18) into the Laplace equation (4) yields
the dispersion relation for cylindrical interface

From Eq (19) we have w ~ k3/2, this is the dispersion relations is of ripplon. The
quantum-mechanical pressure is included in the interfacial tension coefficientaaand Eq.
(19) does not contain any explicit quantum correction term.

For 0 < k?R§ < 1, the right-hand side of Eq. (19) is negative and the frequency w is
pure imaginary. The mode with a wavelength larger than2nR, is therefore dynamically
unstable.

Now let us extend to the case when the first component flows along the positive
direction of the z axis with velocity V, while the second one is at rest. Then the corresponding
stationary state takes the form

n m

B T, it
h h
n

B, = _gzzh 20t+5¢2,

with §¥; given in (13). For the moving case the boundary condition (15) is modified
to be

(8 +Va)R( )= h (86@51)
at TR w8 Jeen)

%R(U) :i(ac‘i%) - (20)

s\ OF Legy

where R(o) denotes the equation of the cylindrical interface:

R(c) = R, + R(0), |IR(0)| «< 1. (21)

Inserting (21) into (20) gives

dR hk
(—w + Vﬁc)ﬂ =—A,I,(kR,)cosa,
do n

1
dR(a)  hk

= —A,K,(kR,)coso.
do ms

w

Therefrom we obtain the solution representing the interface (21)
R(o) = esino, (22)

with |¢] « 1 and o satisfying the dispersion relation of two phonon attributing to
two condensates
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h
w = (V T Alfl(kRo))k e k;
Emy

hk
w :—A2Kl(kR0) o k.
em, 23)

The corresponding speeds of sound read

h
Cq = V e 2 AIII(RRO) i 'DJ

1

h
C2 = —AQKl(kRO) :} 0,
Em

2
implying that the Landau instability no longer takes place.

In favor of (23) it is evident that

) _emy(w —Vk)w
g1101,(r) = kI, (kR,) Iy (kr),

£m, w? (24)

e I [l ).
RK, (eRg) o7
Finally, substituting (6), (13) and (24) into the Laplace equation (4) we arrive at the

G22075(r) =

equation for frequency

(mlnmfo(k}?o) 1 mznzoKo(kRo)) 5 mlnmf.;,(kRo)Vw i Ez (1—k2R2) = 0.
I, (kRy) kK, (kR,) I, (kRo) R (25)
Eq. (25) provides two modes
4Aa
k| -BV + JBEV? * IR (k2Ro* — 1)
. 24 ' (26)

here
B mynolo(kR,) i manz0 Ko (KRo)
~ L(kR) Ki(kR,)
ik mynyoly (kR,)
~ L(kRo)
From Eq. (26) we see with 0 < k*R§ < 1, the frequency w is negative. Therefore,

there is instability at the interface between the two BEC components.
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Conclusion and discussion
In this paper, we obtain the following main results:

The refractive index formula of the NG has been discovered at the interface of the two
components in the cylindrical space when both components are stationary and even when
one component is in motion. From the obtained results, we also observe that the instability
phenomenon at the interface occurs when 0 < k*Rg < 1.

When component 1 of the system moves parallel to the interface, the NG mode
changes from a complex refractive index formula to a phonon mode, but the occurrence of
instability at the interface is not dependent on the velocity of the system.

Comparing with (B. Van Schaeybroeck, 2008; Joseph O. Indekeu, 2015; H. Takeuchi,
2013), we find that the NG mode not only depends on boundary conditions but also the
spatial confinement is dependent on the shape of the interface.
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